AboutContactsEditorial StaffEditorial CouncilArchiveFor AuthorsFor Reviewers

Antibiotic Resistance of Klebsiella Pneumoniae Strains Isolated from the Blood of Patients With COVID-19

Journal «MEDICINA» ¹ 2, 2021, pp.63-74 (Research)

Authors

Malygin A. S.
Ñlinical Pharmacologist1

Andreev S. S.
Head, Department of Clinical Pharmacology, Clinical pharmacologist1

Tsarenko S. V.
Doctor of Medicine, Professor, Faculty of Fundamental Medicine2, Anesthesiologist-Resuscitator, Deputy Chief Physician for Anesthesiology and Resuscitation1

Petrushin M. A.
Anesthesiologist-resuscitator, Head of the Resuscitation Service3

1 - City Clinical Hospital ¹52, Moscow, Russia
2 - Moscow State University M.V. Lomonosov, Moscow, Russia
3 - Tver Regional Clinical Hospital, Tver, Russia

Remarks

Corresponding author: Malygin A.S.; e-mail: dr.a.s.m@yandex.ru. Conflict of interests: None declared. Funding: The study had no sponsorship.

Abstract

A retrospective analysis of case histories and the results of microbiological blood tests of patients with coronavirus infection COVID-19 who were treated in the infectious diseases hospital of the city clinical hospital ¹52 in Moscow in 2020 was carried out. The sensitivity to the main antibacterial agents was determined for each isolate of Klebsiella pneumoniae, the phenotype of each pathogen was characterized (MDR, XDR, PDR). The results of the study were statistically processed and presented in the form of a register of bacteremia cases. Most pathogens (79%) were isolated from the blood of patients who were treated in intensive care units. Klebsiella pneumoniae ranked first in the structure of bacteremias, the frequency of occurrence of the pathogen was 41,1% (282/686). Only 4% of Klebsiella pneumoniae isolates were sensitive to antibiotics; the phenotypes of antibiotic-resistant strains were MDR – 16%, XDR – 76%, PDR – 4%. Most of the isolated Klebsiella pneumoniae strains were carbapenem-resistant (85,4%), 11,1% were colistin-resistant, 10,6% of the isolates were extended spectrum β-lactamase producers.

Key words

bacteremia, antibiotic resistance, Klebsiella pneumoniae, COVID-19

DOI

References

1. Giacobbe D.R., Battaglini D., Ball L., et al. Bloodstream infections in critically ill patients with COVID-19. Eur J Clin Invest. 2020; 50(10): e13319. doi: 10.1111/eci.13319.

2. De Filippo O., D’Ascenzo F., Angelini F., et al. Reduced rate of hospital admissions for ACS during Covid-19 outbreak in Northern Italy. N Engl J Med. 2020; 383: 88-89. doi: 10.1056/ NEJMc2009166.

3. Clancy C.J., Nguyen M.H. COVID-19, superinfections and antimicrobial development: what can we expect? Clin Infect Dis. 2020; 71(10): 2736-2743. doi: 10.1093/cid/ciaa524.

4. Morrill H.J., Pogue J.M., Kaye K.S., LaPlante K.L. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis. 2015; 2(2): ofv050. doi: 10.1093/ofid/ofv050.

5. Pitout J.D., Nordmann P., Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015; 59(10): 5873-5884.

6. Munoz-Price L.S., Poirel L., Bonomo R.A,. et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013; 13:785-796.

7. Canton R., Akova M., Carmeli Y., et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect. 2012; 18: 413-431.

8. Elbediwi M., Li Y., Paudyal N., et al. Global Burden of Colistin-Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980–2018). Microorganisms 2019. 7(10):461. doi: 10.3390/microorganisms7100461.

9. Giacobbe D.R., Del Bono V., Trecarichi E.M., et al. Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case–control–control study. Clin Microbiol Infect. 2015; 21(12): 1106-1108.

10. Srinivas P., Rivard K. Polymyxin resistance in gram-negative pathogens. Curr Infect Dis Rep. 2017;19(11):38. doi: 10.1007/s11908-017-0596-3.

11. Popov D.A. Sravnitel'naya harakteristika sovremennyh metodov opredeleniya produkcii karbapenemaz. [Comparative characteristics of modern methods for determining the production of carbapenemases.] Klinicheskaya mikrobiologiya i antimikrobnaya himioterapiya [Clinical microbiology and antimicrobial chemotherapy] 2019; 21(2): 125-133. (In Russ.)

12. Kozlova N.S., Barantsevich N.E., Barantsevich E.P. Antibiotikorezistentnost' vozbuditelej gnojno-septicheskih infekcij v mnogoprofil'nom stacionare. [Antibiotic resistance of causative agents of purulent-septic infections in a multidisciplinary hospital.] Problemy medicinskoj mikologii [Problems of medical mycology] 2018; 20(1): 40-48. (In Russ.)

13. Eidelstein M.V., Zhuravlev V.S., Shek E.A. Rasprostranennost' karbapenemaz sredi nozokomial'nyh shtammov Enterobacteriaceae v Rossii. [Prevalence of carbapenemases among nosocomial strains of Enterobacteriaceae in Russia,] Izv. Sarat. un-ta. Nov. ser. Ser. Himiya. Biologiya. Ekologiya [Bulletin of Saratov University. New series. Chemistry. Biology. Ecology] 2017; 17(1): 36-41. (In Russ.)

14. Kohler P.P., Volling C., Green K., et al. Carbapenem resistance, initial antibiotic therapy, and mortality in Klebsiella pneumoniae bacteremia: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2017; 38(11): 1319-1328.

15. Falagas M.E., Tansarli G.S., Karageorgopoulos D.E., Vardakas K.Z. Deaths attributable to carbapenem-resistant enterobacteriaceae infections. Emerg Infect Dis 2014; 20 (7):1170-5.

16. Daikos G.L., Tsaousi S., Tzouvelekis L.S., et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014; 58(4): 2322-2328.

17. Papadimitriou-Olivgeris M, Fligou F, Bartzavali C et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients: risk factors and predictors of mortality. Eur J Clin Microbiol Infect Dis. 2017; 36(7):1125-1131.

18. Sukhorukova M.V., Eidelstein M.V., Skleenova E.Yu. et al. Antibiotikorezistentnost' nozokomial'nyh shtammov Enterobacteriaceae v stacionarah Rossii: rezul'taty mnogocentrovogo epidemiologicheskogo issledovaniya "MARAFON" v 2013–2014 gg. [Antibiotic resistance of nosocomial strains of Enterobacteriaceae in hospitals in Russia: results of a multicenter epidemiological study "MARATHON" in 2013–2014] Klinicheskaya mikrobiologiya i antimikrobnaya himioterapiya [Clinical Microbiology and Antimicrobial Chemotherapy] 2017; 19(1): 49-56. (In Russ.)

19. International standard ISO 20776-1. Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices – Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.

20. CLSI MEE. Performance Standards for Antimicrobial Susceptibility Testing: 29th Informational Supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.

21. EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 6.0. January 2016.: http://www.eucast. org/clinical­_breakpoints/.