Authors
Sinyakin I. A.
6th-year student1
Batalova T. A.
Doctor of Biology, Head, Chair for Physiology and Pathophysiology1
1 - Amur State Medical Academy of the Ministry of Health of Russia, Blagoveshchensk, Russian Federation
Corresponding Author
Ivan A. Sinyakin; e-mail: sinyakin.ivan2016@yandex.ru.
Conflict of interest
None declared.
Funding
The study had no sponsorship.
Abstract
Introduction. The coronavirus disease pandemic (COVID-19) is a leading global health and economic concern. The danger to the mother and fetus during pregnancy from infection with SARS-CoV2 is still being studied. New evidence suggests that SARS-CoV-2 infection causes oxidative stress during pregnancy and immune system activation, leading to cytokine storm and subsequent tissue damage. Objective. To establish the pathogenetic role of oxidative stress in the occurrence and severity of COVID-19 and, more importantly, pregnancy outcomes in female patients. Results. A systematic review of the scientific literature in the following databases was performed: PubMed, ResearchGate, Medscape, Cochrane Library. Key searches included the words: pregnancy, oxidative stress, placenta, cytokine storm. Based on a review of the literature, the following conclusion was reached: morphofunctional placental changes resulting from oxidative stress in SARS-CoV-2-infected mothers may result from disorders of the mother-placenta-fetal system caused by systemic viral exposure, resulting in a pathogenetic vicious circle involving systemic inflammation that exacerbates oxidative stress in both the placenta and systemically in the woman. Conclusion. This review highlights the general characteristics of oxidative stress in pregnant women with COVID-19. A better understanding of the mechanisms of SARS-CoV-2 infection and its impact on placental function is critical because the association of pregnancy complications and COVID-19 can lead to potential risk of intrauterine fetal development.
Key words
COVID-19, placenta, pregnancy, oxidative stress, inflammation
DOI
References
1. World Health Organization International Health Regulations Emergency Committee on Novel Coronavirus in China. Available at: https://www.who.int/news-room/events/detail/2020/01/30/default-calendar/international-health-regulations-emergency-committee-on-novel-coronavirus-in-china Accessed: 10.02.2023.
2. Pyrc K., Berkhout B., Van der Hoek L. The novel human coronaviruses NL63 and HKU1. J. Virol. 2007; 81: 3051-3057, doi: 10.1128/JVI.01466-06
3. Zhu N., Zhang D., Wang W., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382(8): 727-733, doi: 10.1056/NEJMoa2001017
4. Groth S.W., Fernandez I.D., Block R.C., et al. Biological changes in the pregnancy-postpartum period and subsequent cardiometabolic risk-UPSIDE MOMS: A research protocol. Res Nurs Health. 2021; 44(4): 608-619, doi: 10.1002/nur.22141
5. Smirnova N.A., Zhukovets I.V., Andrievskaya I.A. et al. Iskhody beremennosti, rodov i sostoyanie novorozhdennyh u zhenshchin s vnebol'nichnoj pnevmoniej, vyzvannoj SARS-COV-2. [Outcomes of pregnancy, childbirth and the condition of newborns in women with community-acquired pneumonia caused by SARS-COV-2.] Amurskij medicinskij zhurnal [Amur Medical Journal] 2022; (1): 47-53, doi: 10.22448/23115068_2022_1_47
6. Chmielewska B., Barratt I., Townsend R., et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob Health. 2021; 9(6): e759-e772, doi: 10.1016/S2214-109X(21)00079-6
7. Rozo N., Valencia D., Newton S.M., et al. Severity of illness by pregnancy status among laboratory-confirmed SARS-CoV-2 infections occurring in reproductive-aged women in Colombia. Paediatr Perinat Epidemiol. 2022; 36(4): 456-465, doi: 10.1111/ppe.12808
8. Wu F., Tian F.J., Lin Y., Xu W.M. Oxidative Stress: Placenta Function and Dysfunction. Am J Reprod Immunol. 2016; 76(4): 258-271, doi: 10.1111/aji.12454
9. Aouache R.; Biquard L.; Vaiman D.; Miralles F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018; 19(5): 1496, doi: 10.3390/ijms19051496
10. Peterhans E. Sendai virus stimulates chemiluminescence in mouse spleen cells. Biochem. Biophys. Res. Commun. 1979; 91(1): 383-392, doi: 10.1016/0006-291x(79)90630-2
11. Bobrova L., Kozlovskaya N., Korotchaeva Y., Bobkova I., Kamyshova E., Moiseev S. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): a new variant of thrombotic microangiopathy? Crit Care Resusc. 2020; 22(3): 284.
12. Klok F., Kruip M.J.H.A., van der Meer N.J.M., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-147.
13. Pham-Huy L.A., He H., Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4: 89-96.
14. Mohd Ariff N.S., Abdul Halim Zaki I., Mohd Noordin Z., et al. A Review of the Prevalence of Thromboembolic Complications among Pregnant Women Infected with COVID-19. J Clin Med. 2022; 11(19): 5934. doi: 10.3390/jcm11195934
15. Sardu C., Gambardella J., Morelli M.B., et al. Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med 2020; 9: 1417.
16. Delgado-Roche L., Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res 2020; 51: 384-7.
17. Lin C.-W., Lin K.-H., Hsieh T.-H., Shiu S-Y., Li J.-Y. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol 2006; 46: 375-80.
18. Tsang J.C.H., Vong, J.S.L., Ji L., Poon L.C.Y., Jiang P., Lui K.O., Ni Y.B., To K.F., Cheng Y.K.Y., Chiu R.W.K., et al. Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc. Natl. Acad. Sci. USA 2017; 114(37): E7786-E7795.
19. Webster K.A. Hypoxia: Life on the edge. Antioxid. Redox Signal. 2007; 9(9): 1303-1307.
20. Jauniaux E., Watson A., Ozturk O., Quick D., Burton G. In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy. Hum. Reprod. 1999; 14(11): 2901-2904.
21. Aouache R., Biquard L., Vaiman D., Miralles F. Oxidative Stress in Preeclampsia and Placental Diseases. Int J Mol Sci. 2018; 19(5): 1496, doi: 10.3390/ijms19051496
22. Montalbetti N., Cantero M.R., Dalghi M.G., Cantiello H.F., Reactive oxygen species inhibit polycystin-2 (TRPP2) cation channel activity in term human syncytiotrophoblast. Placenta 2008; 29(6): 510-518.
23. De Noronha L., Zanluca C., Burger M., Suzukawa A.A., Azevedo M., Rebutini P.Z., et al.. Zika Virus Infection at Different Pregnancy Stages: Anatomopathological Findings, Target Cells and Viral Persistence in Placental Tissues. Front Microbiol 2018; (9): 2266, doi: 10.3389/fmicb.2018.02266
24. Mulvey J.J., Magro C.M., Ma L.X., Nuovo G.J., Baergen R.N. Analysis of complement deposition and viral RNA in placentas of COVID-19 patients. Ann. Diagn. Pathol. 2020; 46: 151530.
25. Baergen R.N., Heller D.S. Placental pathology in Covid-19 positive mothers: preliminary findings. Pediatr. Dev. Pathol.2020; 23(3): 177-180.
26. Shanes E.D., Mithal L.B., Otero S., Azad H.A., Miller E.S., Goldstein J.A. Placental pathology in COVID-19. Am. J. Clin. Pathol.2020; 154(1): 23-32, doi: 10.1101/2020.05.08.20093229
27. Tay M.Z., Poh C.M., Renia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol.2020; 20(6): 363-374.
28. Cheng S.B., Nakashima A., Huber W.J., Davis S., Banerjee S., Huang Z., Saito S., Sadovsky Y., Sharma S. Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors. Cell Death Dis.2019; 10(12): 927.
29. Patane L., Morotti D., Giunta M.R., Sigismondi C., Piccoli M.G., Frigerio L., Mangili G., Arosio M., Cornolti G. Vertical transmission of COVID-19: SARS-CoV-2 RNA on the fetal side of the placenta in pregnancies with COVID-19 positive mothers and neonates at birth. Am. J. Obstet. Gynecol. MFM.2020:100145, doi: 10.1016/j.ajogmf.2020.100145
30. Di Girolamo R., Khalil A., Alameddine S., et al. Placental histopathology after SARS-CoV-2 infection in pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2021; 3(6): 100468, doi: 10.1016/j.ajogmf.2021.100468
31. Rashan N., Bahmani M., Direkvand-Moghadam A. A Case Report of COVID-19 in a Pregnant Woman with Clinical Manifestations of Chorioamnionitis in Ilam. Iran Int J High Risk Behav Addict. 2020; 9: e105178, doi: 10.5812/ijhrba.105178
32. Ng P.C., Leung C.W., Chiu W.K., Wong S.F., Hon E.K. SARS in newborns and children. Biology of the neonate 2004; 85: 293-298, doi: 10.1159/000078174