AboutContactsEditorial StaffEditorial CouncilArchiveFor AuthorsFor Reviewers

Mendelian Randomization in Drug Repurposing

Journal «MEDICINA» ¹ 2, 2023, pp.29-41 (Reviews)

Authors

Plotnikov D. Yu.
MD, PhD, Head, Laboratory of Integrative Epidemiology of the Central Research Laboratory1
ORCID 0000-0002-9950-8992

Kolesnikova E. M.
Student, Faculty of Medicine and Biology1

Khalilov V. R.
Student, Faculty of Pediatrics1

1 - Kazan State Medical University, Kazan, Russian Federation

Corresponding Author

Denis Plotnikov; e-mail: denis.plotnikov@kazangmu.ru.

Conflict of interest

None declared.

Funding

The study had no sponsorship.

Abstract

The development of new drugs is a time consuming and costly process, so the use of approved drugs for new indications (repurposing) is a promising area of development for the pharmaceutical industry. There are two main approaches for drug development: experimental and computational. Currently, due to the availability of large data sets, computational methods, including those based on the use of artificial intelligence, are being actively developed. The widespread use of genetic data in drug development and repurposing has led to the development of such a field of science as pharmacogenetics. The availability of genome-wide association analyses and transcriptome data allow the Mendelian randomization method to be applied to determine the potential for drug repurposing. This article briefly describes the Mendelian randomization method and provides examples of its application to assess the effect of drugs on various diseases.

Key words

repurposing, drugs, pharmacogenetics, Mendelian randomization

DOI

References

1. Hughes J.P., Rees S., Kalindjian S.B., et al. Principles of early drug discovery. Br J Pharmacol 2011; 162: 1239-1249.

2. Saberian N., Peyvandipour A., Donato M., et al. A new computational drug repurposing method using established disease-drug pair knowledge. Bioinformatics 2019; 35: 3672-3678.

3. Johnson J.R., Bross P., Cohen M., et al. Approval summary: imatinib mesylate capsules for treatment of adult patients with newly diagnosed philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase. Clin Cancer Res 2003; 9: 1972-1979.

4. Maksimov A.S., Dergachyova Zh.M. Strategiya pereprofilirovaniya v poiske novyh lekarstvennyh sredstv. [Repurposing strategy in the search for new drugs.] Vestnik farmacii [Bulletin of Pharmacy] 2020; (4): 85-99. (In Russ.)

5. Lotfi Shahreza M., Ghadiri N., Mousavi S.R., et al. A review of network-based approaches to drug repositioning. Brief Bioinform 2018; 19: 878-892.

6. Dudley J.T., Deshpande T., Butte A.J. Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform 2011; 12: 303-311.

7. Ding H., Takigawa I., Mamitsuka H., et al. Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 2014; 15: 734-747.

8. Mroziewicz M., Tyndale R.F. Pharmacogenetics: a tool for identifying genetic factors in drug dependence and response to treatment. Addict Sci Clin Pract 2010; 5: 17-29.

9. Karczewski K.J., Daneshjou R., Altman R.B. Chapter 7: Pharmacogenomics. PLoS Comput Biol 2012; 8: e1002817.

10. Relling M.V., Evans W.E. Pharmacogenomics in the clinic. Nature 2015; 526: 343-350.

11. Gilman A.G., Klinicheskaya farmakologiya po Gudmanu i Gilmanu. [Goodman & Gilman’s pharmacological basis of therapeutics]. Editor of translation in Russian R.R. Alipova. Moscow, 2006. (In Russ.)

12. Weinshilboum R. Inheritance and drug response. N Engl J Med 2003; 348: 529-537.

13. Goodman L.S., Brunton L.L., Chabner B., et al. (eds). Goodman & Gilman’s pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill, 2011.

14. Wadelius M., Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 2007; 7: 99-111.

15. Pantziarka P., Meheus L. Omics-driven drug repurposing as a source of innovative therapies in rare cancers. Expert Opinion on Orphan Drugs 2018; 6: 513-517.

16. Zhang M., Luo H., Xi Z., et al. Drug Repositioning for Diabetes Based on ‘Omics’ Data Mining. PLoS ONE 2015; 10: e0126082.

17. Reay W.R., Cairns M.J. Advancing the use of genome-wide association studies for drug repurposing. Nat Rev Genet 2021; 22: 658-671.

18. Walker V.M., Davey Smith G., Davies N.M., et al. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. International Journal of Epidemiology 2017; 46: 2078-2089.

19. Loos R.J.F. 15 years of genome-wide association studies and no signs of slowing down. Nat Commun 2020; 11: 5900.

20. Lawlor D.A., Harbord R.M., Sterne J.A.C., et al. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Statist Med 2008; 27: 1133-1163.

21. Davey Smith G., Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology 2003; 32: 1-22.

22. Burgess S., Davey Smith G., Davies N.M., et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res 2020; 4: 186.

23. Thanassoulis G., O’Donnell C.J. Mendelian Randomization: Nature’s Randomized Trial in the Post-Genome Era. JAMA 2009; 301: 2386.

24. Bowden J., Davey Smith G., Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology 2015; 44: 512-525.

25. Hartwig F.P., Davey Smith G., Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. International Journal of Epidemiology 2017; 46: 1985-1998.

26. Davey Smith G., Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics 2014; 23: R89-R98.

27. Schmidt A.F., Finan C., Gordillo-Marañón M., et al. Genetic drug target validation using Mendelian randomisation. Nat Commun 2020; 11: 3255.

28. Gkatzionis A., Burgess S., Newcombe P.J. Statistical Methods for cis-Mendelian Randomization with Two-sample Summary-level Data. arXiv:2101.04081v2, doi: 10.48550/arXiv.2101.04081

29. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium; Swerdlow D.I., Holmes M.V., et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 2012; 379: 1214-1224.

30. Burgess S., Butterworth A., Thompson S.G. Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genet Epidemiol 2013; 37: 658-665.

31. Gao N., Li X., Kong M., et al. Associations Between Vitamin D Levels and Risk of Heart Failure: A Bidirectional Mendelian Randomization Study. Front Nutr 2022; 9: 910949.

32. Navale S.S., Mulugeta A., Zhou A., et al. Vitamin D and brain health: an observational and Mendelian randomization study. The American Journal of Clinical Nutrition 2022; 116: 531-540.

33. Sutherland J.P., Zhou A., Hyppönen E. Vitamin D Deficiency Increases Mortality Risk in the UK Biobank: A Nonlinear Mendelian Randomization Study. Ann Intern Med 2022; 175: 1552-1559.

34. Gardner D.G., Chen S., Glenn D.J. Vitamin D and the heart. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2013; 305: R969-R977.

35. Revez J.A., Lin T., Qiao Z., et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun 2020; 11: 1647.

36. Gaziano L., Giambartolomei C., Pereira A.C., et al. Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nat Med 2021; 27: 668-676.

37. Mendez D., Gaulton A., Bento A.P., et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Research 2019; 47: D930-D940.

38. Gaziano J.M., Concato J., Brophy M., et al. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. Journal of Clinical Epidemiology 2016; 70: 214-223.

39. The COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet 2020; 28: 715-718.

40. Khankari N.K., Keaton J.M., Walker V.M., et al. Using Mendelian randomisation to identify opportunities for type 2 diabetes prevention by repurposing medications used for lipid management. eBioMedicine 2022; 80: 104038.

41. Barbeira A.N., Dickinson S.P., Bonazzola R., et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun 2018; 9: 1825.