Authors
Shulga A. S.
MD, PhD, Assistant, Chair for Personalized and Translational Medicine12
Kraynova N. N.
MD, PhD, Assistant Professor, Chair for Personalized and Translational Medicine12
Burtsev D. V.
Doctor of Medicine, Head, Chair for Personalized and Translational Medicine12
1 - Rostov State Medical University, Rostov-on-Don, Russia
2 - Regional Consultative and Diagnostic Center, Rostov-on-Don, Russia
Corresponding Author
Shulga Alexander; e-mail: contrarius@yandex.ru
Conflict of interest
None declared.
Funding
The study had no sponsorship.
Abstract
Sample stability is essential for reliable results in clinical laboratory practice. The aim of the work was to investigate the change in values of hematological indices in samples stored for up to 72 hours under different temperature regimes. A total of 60 whole blood samples stored under different conditions were analyzed: at room temperature (25°C), heated to 35°C and cooled to 4°C. Analysis was performed at different time points: immediately after blood sampling and then consecutively after 3, 6, 12, 24, 48 and 72 hours. K2EDTA anticoagulant tubes were used, and results were obtained using a UniCel DxH 800 hematology analyzer. The median shift of the parameters relative to baseline for each combination of time and temperature was assessed using the Wilcoxon matched pairs test. The shift in hemogram values obtained using Bland-Altman plots was compared with the maximum permissible error specified in the quality specification for the desirable error. Hemoglobin, erythrocyte count, mean erythrocyte hemoglobin content and platelet content were stable for at least 72 hours at all temperatures used in the experiment. For the other tested parameters, the first unacceptable changes in hemogram values were observed after 3 hours when the samples were stored at 25°C and 35°C. In samples cooled to 4°C, the first statistically significant differences were recorded after 6 hours. As a result, storage of samples for 72 hours at room temperature led to reliable unacceptable changes in 6 hemogram parameters of the 11 studied, at 4°C 5 parameters changed unacceptably, and at 35°C – 7 parameters. The obtained results, on the one hand, indicate that when analyzing the results of hematological tests is performed with a delay after sample collection, changes in hematological parameters should be considered; on the other hand, they provide information about the list of parameters subject to temperature-time changes, as well as about the intensity of these changes.
Key words
stability of samples, storage conditions, hematological tests, hematological analyzers
DOI
References
1. Kishkun A.A. Aktual'nost' problemy centralizacii klinicheskih laboratornyh issledovanij dlja sistemy zdravoohranenija strany. [Relevance of the problem of centralization of clinical laboratory research for the country's health care system]. Laboratornaja medicina [Laboratory Medicine] 2011; (11): 29-34. (In Russ.)
2. Kishkun A.A. Centralizacija laboratornyh issledovanij kak sovremennaja paradigma povyshenija jekonomicheskoj i klinicheskoj jeffektivnosti laboratornoj diagnostiki. [Centralization of laboratory research as a modern paradigm for increasing the economic and clinical efficiency of laboratory diagnostics]. Klinicheskaja laboratornaja diagnostika [Clinical laboratory diagnostics] 2013; (9): 4. (In Russ.)
3. Godkov M.A. Principy centralizacii laboratornyh issledovanij. [Principles of centralization of laboratory research]. Laboratornaja sluzhba [Laboratory Service] 2015; (4): 3-10. (In Russ.)
4. Men'shikov V.V. Optimizacija rashodov na zdravoohranenie, centralizacija laboratornyh issledovanij i dostupnost' laboratornoj informacii. [Optimization of health care costs, centralization of laboratory research and availability of laboratory information]. Klinicheskaja laboratornaja diagnostika [Clinical laboratory diagnostics] 2014; (59): 4. (In Russ.)
5. Gil'manov A.A., Hajrullin I.I., Nurmyeva L.A. et al. Centralizacija laboratornoj sluzhby gosudarstvennyh medicinskih uchrezhdenij goroda na baze kliniko-diagnosticheskoj laboratorii krupnogo mnogoprofil'nogo stacionara. [Centralization of the laboratory service of state medical institutions of the city on the basis of the clinical diagnostic laboratory of a large multidisciplinary hospital]. Menedzher zdravoohranenija [Healthcare Manager] 2013; (11): 14-22. (In Russ.)
6. Adcock Funk D.M., Lippi G., Favaloro E.J. et al. Quality standards for sample processing, transportation, and storage in hemostasis testing. Seminars in thrombosis and hemostasis 2012; 38(6):576-585. doi:10.1055/s-0032-1319768.
7. Lippi G., Guidi G.C., Mattiuzzi C. et al. Preanalytical variability: the dark side of the moon in laboratory testing. Clinical chemistry and laboratory medicine 2006; 44(4):358-365. doi:10.1515/CCLM.2006.073.
8. Murray L.P., Baillargeon K.R., Bricknell J.R. et al. Determination of sample stability for whole blood parameters using formal experimental design. Analytical Methods 2019; 11(7):930-935. doi:10.1039/C8AY02351D.
9. Zini G. International Council for Standardization in Haematology (ICSH). Stability of complete blood count parameters with storage: toward defined specifications for different diagnostic applications. International journal of laboratory hematology 2014; 36(2):111-113. doi:10.1111/ijlh.12181.
10. Daves M., Zagler E.M., Cemin R. et al. Sample stability for complete blood cell count using the Sysmex XN haematological analyser. Blood transfusion = Trasfusione del sangue 2015; 13(4):576-582. doi:10.2450/2015.0007-15.
11. Joshi A., McVicker W., Segalla R. et al. Determining the stability of complete blood count parameters in stored blood samples using the SYSMEX XE-5000 automated haematology analyser. International journal of laboratory hematology 2015; 37(5):705-714. doi:10.1111/ijlh.12389.
12. Buoro S., Mecca T., Seghezzi M. et al. Assessment of blood sample stability for complete blood count using the Sysmex XN-9000 and Mindray BC-6800 analyzers. Revista brasileira de hematologia e hemoterapia 2016; 38(3):225-239. doi:10.1016/j.bjhh.2016.05.010.
13. Pintér E., László K., Schüszler I. et al. The stability of quantitative blood count parameters using the ADVIA 2120i hematology analyzer. Practical laboratory medicine 2015; 4:16-21. doi:10.1016/j.plabm.2015.12.001.
14. Oliveira L.R., Simionatto M., Cruz B.R. et al. Stability of complete blood count in different storage conditions using the ABX PENTRA 60 analyzer. International journal of laboratory hematology 2018; 40(3):359-365. doi:10.1111/ijlh.12797.
15. Ricós C., Alvarez V., Cava F. et al. Current databases on biological variation: pros, cons and progress. Scandinavian journal of clinical and laboratory investigation 1999; 59(7):491-500. doi:10.1080/00365519950185229.
16. Imeri F., Herklotz R., Risch L. et al. Stability of hematological analytes depends on the hematology analyser used: a stability study with Bayer Advia 120, Beckman Coulter LH 750 and Sysmex XE 2100. Clinica chimica acta; international journal of clinical chemistry 2008; 397(1-2):68-71. doi:10.1016/j.cca.2008.07.018.
17. Bruegel M., Nagel D., Funk M. et al. Comparison of five automated hematology analyzers in a university hospital setting: Abbott Cell-Dyn Sapphire, Beckman Coulter DxH 800, Siemens Advia 2120i, Sysmex XE-5000, and Sysmex XN-2000. Clinical chemistry and laboratory medicine 2015; 53(7):1057-1071. doi:10.1515/cclm-2014-0945.
18. Bourner G., Dhaliwal J., Sumner J. Performance evaluation of the latest fully automated hematology analyzers in a large, commercial laboratory setting: a 4-way, side-by-side study. Laboratory hematology : official publication of the International Society for Laboratory Hematology 2005; 11(4):285-297. doi:10.1532/lh96.05036.
19. Johnson M., Samuels C., Jozsa N. et al. Three-way evaluation of high-throughput hematology analyzers-Beckman Coulter LH 750, Abbott Cell-Dyn 4000, and Sysmex XE-2100. Laboratory Hematology 2002; 8, 230-238.
20. Vogelaar S.A., Posthuma D., Boomsma D. et al. Blood sample stability at room temperature for counting red and white blood cells and platelets. Vascular pharmacology 2002; 39(3):123-125. doi:10.1016/s1537-1891(02)00298-7.
21. Rahmanitarini A., Hernaningsih Y., Indrasari Y.N. et al. The stability of sample storage for complete blood count (CBC) toward the blood cell morphology. Bali Medical Journal 2019; 8(2):391-395. doi:10.15562/bmj.v8i2.1369.
22. Turgeon M.L. Basic Laboratory Assessment of Erythrocytes, Leukocytes, and Platelets. Clinical Hematology Theory and Procedures. Philadephia: Wolter Kluwer 2018: P. 704.
23. Rodak B.F., Fritsma G.A., Keohane F.A. Hematology, Clinical Principles and Application. Elsevier 2020: P. 905.
24. Flatt J.F., Bawazir W.M., Bruce L.J. The involvement of cation leaks in the storage lesion of red blood cells. Frontiers in physiology 2014; 5:214. doi:10.3389/fphys.2014.00214.
25. Shrivastava M. The platelet storage lesion. Transfusion and apheresis science: official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis 2009; 41(2):105-113. doi:10.1016/j.transci.2009.07.002.
26. Buttarello M., Plebani M. Automated blood cell counts: state of the art. American journal of clinical pathology 2008; 130(1):104-116. doi:10.1309/EK3C7CTDKNVPXVTN.
27. Briggs C., Culp N., Davis B. et al. ICSH guidelines for the evaluation of blood cell analysers including those used for differential leucocyte and reticulocyte counting. International journal of laboratory hematology 2014; 36(6):613-627. doi:10.1111/ijlh.12201.