Authors
Chuprov A. D.
Professor, Doctor of Medical Science, Director1
Kim S. M.
Ophthalmologist, Head of the Ophthalmological Department1
Kazakova T. V.
junior researcher2
Treushnikov V. M.
General Director3
1 - Orenburg branch of the S. Fyodorov Eye Microsurgery Federal State Institution of the Ministry of Health of the Russian Federation, Orenburg, Russia
2 - Federal Scientific Center for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences, Orenburg, Russia
3 - OOO «Research and Development enterprise »Reper-NN«», Nizhniy Novgorod, Russia
Corresponding Author
Kim Svetlana Mikhailovna, e-mail: nauka@mail.ofmntk.ru
Funding
The study had no sponsorship.
Conflict of interest
None declared.
Abstract
Lens opacity, which leads to cataract, is one of the most complicated issues in ophthalmology. Pathophysiology of cataract progression is far from being clearly established. Despite low lipid content in the lens of the eye, there is an assumption that they and their predecessors may be involved in the development of this disease. Given the many roles of monounsaturated fatty acids, it can be expected that variations in stearoyl-Coa desaturase activity will affect a number of key physiological processes.
Key words
δ9 desaturases, stearoyl-Coa desaturase, cataract, lipid metabolism, eye lens
DOI
References
1. Data base SCD stearoyl-CoA desaturase [Homo sapiens (human)]. 2021 [Electronic resource]. Available at: https://www.ncbi.nlm.nih.gov/gene/6319 (Retrieved: 08.02.2021).
2. Data base of Pubmed. [Electronic resource]. Available at: https://pubmed.ncbi.nlm.nih.gov/?term=desaturase (Retreived: 31.01.2021).
3. Koroleva I.A., Egorov A.E. Metabolizm khrustalika: osobennosti i puti korrektsii. [Lens metabolism: features and ways of correction]. RMZh Klinicheskaya Oftal'mologiya [Russian Journal of Clinical Ophthalmology] 2015; (4): 191-195. (In Russ.)
4. Titov V.N. Izofermenty stearil-koenzim A-desaturazy i deystvie insulina v svete filogeneticheskoy teorii patologii. Oleinovaya zhirnaya kislota v realizatsii biologicheskikh funktsiy trofologii i lokomotsii. [Stearyl-coenzyme A-desaturase isozymes and insulin action in the light of the phylogenetic theory of pathology. Oleic fatty acid in the implementation of biological functions of trophology and locomotion]. Klinicheskaya laboratornaya diagnostika [Clinical laboratory diagnostics] 2013; (11): 16-26. (In Russ.)
5. AlJohani A.M., Syed D.N., Ntambi J.M. Insights into Stearoyl-CoA Desaturase-1 Regulation of Systemic Metabolism. Trends in Endocrinology & Metabolism 2017; 28 (12): 831-842. doi: 10.1016/j.tem.2017.10.003
6. Andley U.P. Crystallins in the eye: Function and pathology. Progress in Retinal and Eye Research 2007; 26 (1): 78-98. doi: 10.1016/j.preteyeres.2006.10.003
7. Arbo I., Halle C., Malik D. et al. Insulin induces fatty acid desaturase expression in human monocytes. Scandinavian Journal of Clinical & Laboratory Investigation 2011; 71(4):330-9. doi: 10.3109/00365513.2011.566350
8. Ariel Igal R. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochimica et Biophysica Acta (BBA) 2016; 1861(12 Pt A):1865-1880. doi: 10.1016/j.bbalip.2016.09.009
9. Bai Y., McCoy J.G., Levin E.J. et al. X-ray Structure of a Mammalian Stearoyl-CoA Desaturase. Nature 2015; 524(7564):252-6. doi: 10.1038/nature14549
10. Bond L.M., Miyazaki M., O’Neill L.M., Ding F., Ntambi J.M. In: Biochemistry of Lipids, Lipoproteins and Membranes (Sixth Edition) McLeod RS, editor. Elsevier: Boston; 2016: 185-208.
11. Borchman D., Yappert M.C. Lipids and the ocular lens. Journal of Lipid Research 2010; 51(9): 2473–2488. doi: 10.1194/jlr.R004119
12. Dobrzyn A., Ntambi J. Stearoyl-CoA desaturase: A therapeutic target of insulin resistance and diabetes. Drug Discovery Today: Therapeutic Strategies 2008; 2 (2): 125-128.
13. Dobrzyn A., Ntambi J.M. Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obesity Reviews 2005; 6 (2): 169-174.
14. Dobrzyn A., Ntambi J.M. The Role of Stearoyl-CoA Desaturase in Body Weight Regulation. Trends in Cardiovascular Medicine 2004; 14 (2): 77-81. doi: 10.1016/j.tcm.2003.12.005
15. Dobrzyn A., Ntambia J.M. The role of stearoyl-CoA desaturase in the control of metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids 2005; 73(1):35-41. doi: 10.1016/j.plefa.2005.04.011
16. Dobrzyn P., Bednarski T., Dobrzyn A. Metabolic reprogramming of the heart through stearoyl-CoA desaturase. Progress in Lipid Research 2015; 57:1-12. doi: 10.1016/j.plipres.2014.11.003. Epub 2014 Dec 5.
17. Donma O., Yorulmaz E., Pekel H. et al. Blood and lens lipid peroxidation and antioxidant status in normal individuals, senile and diabetic cataractous patients. Current Eye Research 2002; 25 (1): 9-16. doi: 10.1076/ceyr.25.1.9.9960
18. Ducheix S., Peres C., Härdfeldt J. et al. Deletion of Stearoyl-CoA Desaturase-1 From the Intestinal Epithelium Promotes Inflammation and Tumorigenesis, Reversed by Dietary Oleate. Gastroenterology 2018; 155(5):1524-1538.e9. doi: 10.1053/j.gastro.2018.07.032
19. Dumas S., Ntambi J.M. Co-conspirators in a new mechanism for the degradation of Δ9-desaturase. Journal of Biological Chemistry 2017; 292(49):19987-19988. doi: 10.1074/jbc.H117.801936
20. Engler M.M., Bellenger-Germain S.H., Engler M.B. et al. Dietary docosahexaenoic acid affects stearic acid desaturation in spontaneously hypertensive rats. Lipids 2000; (35): 1011-1015. doi: 10.1007/s11745-000-0612-0
21. Flowers M.T., Ntambi J.M. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Current Opinion in Lipidology 2008; 19 (3): 248-256. doi: 10.1097/MOL.0b013e3282f9b54d
22. Flowers M.T., Ntambia J.M. Stearoyl-CoA Desaturase and its Relation to High-Carbohydrate Diets and Obesity. Biochimica et Biophysica Acta (BBA) 2009; 1791 (2): 85-91.
23. Frigolet M.E., Gutiérrez-Aguilar R. The Role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Advances in Nutrition 2017; 8 (1): 173S-181S. doi: 10.3945/an.115.011130.
24. Fujita Y., Okada T., Abe Y. et al. Effect of cod liver oil supplementation on the stearoyl-CoA desaturase index in obese children: A pilot study. Obesity Research & Clinical Practice 2015; 9 (1): 31-34. doi: 10.1016/j.orcp.2014.01.004
25. Heinemann F.S., Ozols J. Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins, Leukotrienes and Essential Fatty Acids 2003; 68 (2): 123-33. doi: 10.1016/s0952-3278(02)00262-4
26. Hejtmancik J.F., Riazuddin S.A., McGreal R. et al. Lens Biology and Biochemistry. Progress in Molecular Biology and Translational Science 2015; 134: 169-201. doi: 10.1016/bs.pmbts.2015.04.007
27. Hejtmancik J.F., Shiels A. Overview of the Lens. Progress in Molecular Biology and Translational Science 2015; 134: 119-127. doi: 10.1016/bs.pmbts.2015.04.006
28. Hodson L., Fielding B.A. Stearoyl-CoA desaturase: rogue or innocent bystander? Progress in Lipid Research 2013; 52 (1): 15-42. doi: 10.1016/j.plipres.2012.08.002
29. Iida T., Ubukata M., Mitani I. et al. Discovery of potent liver-selective stearoyl-CoA desaturase-1 (SCD1) inhibitors, thiazole-4-acetic acid derivatives, for the treatment of diabetes, hepatic steatosis, and obesity. European Journal of Medicinal Chemistry 2018; 158: 832-852. doi: 10.1016/j.ejmech.2018.09.003
30. Inaba T., Tanaka Y., Tamaki S. et al. Compensatory increases in tear volume and mucin levels associated with meibomian gland dysfunction caused by stearoyl-CoA desaturase-1 deficiency. Scientific Reports 2018; 3358.
31. Iwig M., Glaesser D., Fass U. et al. Fatty acid cytotoxicity to human lens epithelial cells. Experimental Eye Research 2004; 79 (5): 689-704. doi: 10.1016/j.exer.2004.07.009
32. Kajikawa S., Harada T., Kawashima A. et al. Highly purified eicosapentaenoic acid prevents the progression of hepatic steatosis by repressing monounsaturated fatty acid synthesis in high-fat/high-sucrose diet-fed mice. Prostaglandins Leukot Essent Fatty Acids 2009; 80(4):229-38. doi: 10.1016/j.plefa.2009.02.004
33. Kakuma T., Lee Y., Unger R.H. Effects of leptin, troglitazone, and dietary fat on stearoyl CoA desaturase. Biochemical and Biophysical Research Communications 2002; 297 (5): 1259-1263. doi: 10.1016/s0006-291x(02)02375-6
34. Kamal S., Saleem A., Rehman S. et al. Protein engineering: Regulatory perspectives of stearoyl CoA desaturase. International Journal of Biological Macromolecules 2018; 114:692-699. doi: 10.1016/j.ijbiomac.2018.03.171
35. Koeberle A., Löser K., Thürmer M. Stearoyl-CoA desaturase-1 and adaptive stress signaling. Biochimica et Biophysica Acta (BBA) 2016; 1861 (11): 1719-1726. doi: 10.1016/j.bbalip.2016.08.009
36. Li H., Estrada R., Yappert M.C. et al. Oxidation-induced changes in human lens epithelial cells: 1. Phospholipids. Free Radical Biology and Medicine 2006; 41 (9): 1425-1432. doi: 10.1016/j.freeradbiomed.2006.07.022
37. Li J., Ke D., Yao L. et al. Response of genes involved in lipid metabolism in rat epididymal white adipose tissue to different fasting conditions after long-term fructose consumption. Biochemical and Biophysical Research Communications 2017; 484 (2): 336-341. doi: 10.1016/j.bbrc.2017.01.119
38. Li Z.Z., Berk M., McIntyre T.M. et al. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. Journal of Biological Chemistry 2009: 284(9):5637-44. doi: 10.1074/jbc.M807616200
39. Lin J., Y. Choi, D. L. Hartzell et al. CNS melanocortin and leptin effects on stearoyl-CoA desaturase-1 and resistin expression. Biochemical and Biophysical Research Communications 2003; 311 (2): 324-328. doi: 10.1016/j.bbrc.2003.10.004
40. Linn F., Hallström B.M., Oksvold P. Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics. Molecular & Cellular Proteomics 2014: 13 (2): 397-406. doi: 10.1074/mcp.M113.035600
41. Liu L., Wang S., Yao L. et al. Long-term fructose consumption prolongs hepatic stearoyl-CoA desaturase 1 activity independent of upstream regulation in rats. Biochemical and Biophysical Research Communications 2016; 479(4):643-648. doi: 10.1016/j.bbrc.2016.09.160.
42. Liu X., Burhans M.S., Flowers M.T. et al. Hepatic oleate regulates liver stress response partially through PGC-1α during high-carbohydrate feeding. Journal of Hepatology 2016; 65 (1): 103-112. doi: 10.1016/j.jhep.2016.03.001
43. Mainali L., Raguz M., O’Brien W.J. et al. Changes in the properties and organization of human lens lipid membranes occurring with age. Current Eye Research 2017; 42 (5): 721-731. doi: 10.1080/02713683.2016.1231325
44. Mainali L., Raguz M., O'Brien W.J. et al. Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61-70-year-old human donors. European Biophysics Journal 2015; 44 (0): 91-102. doi: 10.1007/s00249-014-1004-7
45. Mauvoisin D., Mounier C. Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 2011; 93 (1): 78-86. doi: 10.1016/j.biochi.2010.08.001
46. Mauvoisin D., Prévost M., Ducheix S. et al. Key role of the ERK1/2 MAPK pathway in the transcriptional regulation of the Stearoyl-CoA Desaturase (SCD1) gene expression in response to leptin. Molecular and Cellular Endocrinology 2010; 319 (1-2): 116-128. doi: 10.1016/j.mce.2010.01.027
47. Miyazaki M., Dobrzyn A., Man W.C. et al. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. Journal of Biological Chemistry 2004; 279 (24): 25164-25171. doi: 10.1074/jbc.M402781200.
48. Miyazaki M., Flowers M.T., Sampath H. et al. Hepatic Stearoyl-CoA Desaturase-1 Deficiency Protects Mice from Carbohydrate-Induced Adiposity and Hepatic Steatosis. Cell Metabolism 2007; 6(6):484-96. doi: 10.1016/j.cmet.2007.10.014.
49. Miyazaki M., Ntambia J.M. Role of stearoyl-coenzyme A desaturase in lipid metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids 2003; 68(2):113-21. doi: 10.1016/s0952-3278(02)00261-2.
50. Nagao K., Murakami A., Umeda M. Structure and Function of Δ9-Fatty Acid Desaturase. Chemical and Pharmaceutical Bulletin 2019; 67 (4): 327-332. doi: 10.1248/cpb.c18-01001
51. Ntambi J.M. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. Journal of Lipid Research 1999; 40 (9): 1549-5158.
52. Ntambi J.M., Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in Lipid Research 2004; 43(2):91-104. doi: 10.1016/s0163-7827(03)00039-0
53. Pascolini D., Mariotti S.P. Global estimates of visual impairment. British Journal of Ophthalmology 2012; 96(5):614-8. doi: 10.1136/bjophthalmol-2011-300539
54. Paton C.M., Ntambi J.M. Biochemical and physiological function of stearoyl-CoA desaturase. American journal of physiology. Endocrinology and metabolism 2009; 297(1): E28-37. doi: 10.1152/ajpendo.90897.2008
55. Pescosolido N., Barbato A., Giannotti R. et al. Age-related changes in the kinetics of human lenses: prevention of the cataract. International Ophthalmology 2016; 9 (10): 1506-1517. doi: 10.18240/ijo.2016.10.23
56. Pouchieu C., Chajes V., Laporte F. et al. Prospective associations between plasma saturated, monounsaturated and polyunsaturated fatty acids and overall and breast cancer risk – modulation by antioxidants: a nested case-control study. PLoS One 2014; 9 (2): e90442. doi: 10.1371/journal.pone.0090442
57. Presler M., Wojtczyk-Miaskowska A., Schlichtholz B. et al. Increased expression of the gene encoding stearoyl-CoA desaturase 1 in human bladder cancer. Molecular and Cellular Biochemistry 2018; 447 (1): 217-224. doi: 10.1007/s11010-018-3306-z
58. Raguz M., Mainali L., O’Brien W.J. et al. Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens. Experimental Eye Research 2014; (120): 138-151. doi: 10.1016/j.exer.2014.01.018
59. Raguz M., Mainali L., O'Brien W.J. et al. Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: methodology development and its application to studies of porcine lens membranes. Experimental Eye Research 2015; 140:179-186. doi: 10.1016/j.exer.2015.09.006
60. Sabah J., McConkey E., Welti R. et al. Role of albumin as a fatty acid carrier for biosynthesis of lens lipids. Experimental Eye Research 2005; 80 (1): 31-36.
61. Sampath H., Ntambi J.M. Role of Stearoyl-CoA Desaturase-1 in Skin Integrity and Whole Body Energy Balance. Journal of Biological Chemistry 2014; 289 (5): 2482-2488. doi: 10.1074/jbc.R113.516716
62. Seng J.A., Nealon J.R., Blanksby S.J. et al. Distribution of Glycerophospholipids in the Adult Human Lens. Biomolecules 2018; 8 (4): 156. doi: 10.3390/biom8040156
63. Shen J., Wu G., Tsai A. et al. Structure and Function of Mammalian Stearoyl-COA Desaturase. Biophysical Journal 2018; 114 (3): 426.
64. Shi H.B., Luo J., Yao D.W. et al. Peroxisomeproliferator-activated receptor-γ stimulates the synthesis of monounsaturated fatty acids in dairy goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase. Journal of Dairy Science 2013; 96(12):7844-53. doi: 10.3168/jds.2013-7105
65. Shine W.E., McCulley J.P. Association of meibum oleic acid with meibomian seborrhea. Cornea 2000: 19 (1): 72-74. doi: 10.1097/00003226-200001000-00014
66. Subczynski W.K., Mainali L., Raguz M. et al. Organization of lipids in fiber-cell plasma membranes of the eye lens. Experimental Eye Research 2017; 156: 79-86. doi: 10.1016/j.exer.2016.03.004
67. Ting T.C., Miyazaki M. Stearoyl-CoA Desaturase Genes in Lipid Metabolism. Springer 2013: P.73.
68. Ulven S.M., K.T. Dalen, Gustafsson J. et al. LXR is crucial in lipid metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids 2005; 73(1):59-63. doi: 10.1016/j.plefa.2005.04.009
69. Uto Y. Recent progress in the discovery and development of stearoyl CoA desaturase inhibitors. Chemistry and Physics of Lipids 2016; 197:3-12. doi: 10.1016/j.chemphyslip.2015.08.018
70. Wang H., Klein M.G., Levin I. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nature Structural & Molecular Biology 2015; 22: 581-585.
71. Widomska J., Subczynski W. K., Mainali L. et al. Cholesterol Bilayer Domains in the Eye Lens Health: A Review. Cell Biochemistry and Biophysics 2017; 75 (3): 387-398. doi: 10.1007/s12013-017-0812-7
72. William S., Kutty R.K. et al. Fenretinide induces ubiquitin-dependent proteasomal degradation of stearoyl-CoA desaturase in human retinal pigment epithelial cells. Journal of Cellular Physiology 2014; 229(8): 1028-1038. doi: 10.1002/jcp.24527
73. Xu H.F., Luo J., Zhang X.Y. et al. Activation of liver X receptor promotes fatty acid synthesis in goat mammary epithelial cells via modulation of SREBP1 expression. Journal of Dairy Science 2019; 102(4): 3544-3555. doi: 10.3168/jds.2018-15538
74. Zelenka P.S. Lens lipids. Current Eye Research 1984; 3(11):1337-59. doi: 10.3109/02713688409007421
75. Zhang S., Yang Y., Shi Y. Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochemical Journal 2005; 388(Pt 1):135-42. doi: 10.1042/BJ20041554.
76. Zorić L. Parameters of oxidative stress in the lens, aqueous humor and blood in patients with diabetes and senile cataracts. Srpski Arhiv Za Celokupno Lekarstvo 2003; 131(3-4):137-42. doi: 10.2298/sarh0304137z.