Authors
Andryukov K. V.
PhD (Pharmacy), Assistant Professor, Chair for Pharmaceutical Chemistry1
Korkodinova L. M.
Doctor of Pharmacy, Professor, Head, Chair for Pharmaceutical Chemistry1
1 - Perm State Pharmaceutical Academy, Perm, Russia
Remarks
Corresponding Author: Andryukov Konstantin; e-mail: k_andrukov@mail.ru. Conflict of interest. None declared. Funding. The study had no sponsorship.
Abstract
The article focuses on the use of molecular docking for the enzyme E. Coli hydrolase (S. Aureus) in the study of the "structure-activity" relationship in the series of substituted amides and hydrazides of N-aroyl anthranilic acids. For the construction of the structure-activity model, we used the results of molecular docking on the enzyme peptide deformylase (hydrolase) E.Coli and S.Aureus of substituted amides and hydrazides of N-aroyl anthranilic acids. During the docking, E. Coli hydrolase enzymes (PDB ID code: 1LRU) and S. Aureus (PDB ID code: 1Q1Y) were used, the structures of which were obtained from the RCSB Protein Data Bank database. Before carrying out molecular docking, optimization and quantum-chemical calculation of the structures of the studied compounds was performed using the PM3 semiempirical method applying Gaussian 03 software. Significant parameters were determined: total electric field strength Σ (Å), potential Σ (φ) and the absolute value of charge Σ (|q|) on the atoms of oxygen, nitrogen, carbon and hydrogen. We carried out theoretical calculation of the physicochemical descriptors of the compounds under study: lipophilic constants (log Pcalc), acidity constants (pKacalc) and basicity (pKâcalc). Ligand-receptor interaction modeling was performed by the AutoDock 4.0 software as part of the MGL Tools 1.5.6 software package, using the Lamarkian genetic algorithm. As a result of docking for enzymes hydrolase E.Coli and S.Aureus, scoring functions were obtained: binding energy (Binding energy (BeE.Coli and BeS.Aureus)), intermolecular energy (Intermolecular energy (ImeE.Coli and ImeS.Aureus)) and inhibition constant (KiE.Coli and KiS.Aureus) characterizing the interaction of the ligand with the receptor. Studies of the dependence of antimicrobial activity (AA) from scoring functions and physicochemical descriptors were carried out. Structure-activity models were compiled by conducting multiple linear regression analysis using the Statistica 6 program. Four correlation equations were compiled relating the scoring functions and physico-chemical descriptors with antimicrobial activity using 20 compounds. A check was performed for the models created using the example of 4 compounds. Linear dependences of AAcalc. from experimental values of AAexp. (MICexp.(E.Coli) and MICexp.(S.Aureus) for equations 2 and 4, made up of four, with correlation coefficients (Rpred. (2) = 0.961 and Rpred. (4) = 0.911), show a high degree of communication AAcalc. with AAexp..
Key words
amide, hydrazide, ànthranilic acid, molecular docking, antimicrobial activity, quantum chemical parameters, structure-activity
DOI
References
1. Andryukov K.V., Korkodinova L.M. Kvantovo-himicheskie parametry v issledovanii zavisimosti struktura-ionizaciya N-zameshchennyh mono (di)galogen(n) antranilovyh kislot, ih amidov i gidrazidov [Quantum and chemical parameters in a dependence research structure-ionization of the anthranilic acids N-replaced mono halogen (H), their amides and hydrazides]. Himiko-farmacevticheskij zhurnal [Chemical and Pharmaceutical Journal] 2016; 50 (3): 23-27. (In Russ.)
2. Andryukov K.V., Korkodinova L.M. Molekulyarnyj doking v izuchenii vzaimodejstviya amidov i gidrazidov N-aroilzameshchennyh alogen(N)antranilovyh kislot s ciklooksigenazoj 1, proyavlyayushchih protivovospalitel'nuyu aktivnost' [Molecular docking study of the interaction of cyclooxygenase 1 with N-aroyl-substituted halogen(H)anthranilic acid amides and hydrazides exhibiting anti-inflammatory activity]. Himiko-farmacevticheskij zhurnal [Chemical and Pharmaceutical Journal] 2018; 52 (5): 29-32. (In Russ.)
3. Andryukov K.V., Korkodinova L.M. Prognozirovanie koehfficienta raspredeleniya oktanol-voda proizvodnyh N-arilzameshchennyh antranilovyh kislot [Prediction of the octanol-water partition coefficients of N-aryl-substituted anthranilic acid derivatives]. Himiko-farmacevticheskij zhurnal [Chemical and Pharmaceutical Journal] 2013; 47 (12): 38-41. (In Russ.)
4. Andryukov K.V. Sintez, svojstva i biologicheskaya aktivnost' mono(di)bromzameshchennyh proizvodnyh antranilovoj kisloty, izuchenie svyazi stroeniya s dejstviem s ispol'zovaniem konstant ionizacii i kvantovo-himicheskih raschyotov [Synthesis, properties and biological activity of mono(di)bromosubstituted anthranilic acid derivatives, study of structure-activity relationship using ionization constants and quantum chemical calculations]. Diss. na soiskanie uchenoj stepeni k.farm.n. [PhD (Pharmacy) Thesis]. Perm', 2006. (In Russ.)
5. Andryukov K.V., Tomilov M.V., Korkodinova L.M., Odegova T.F. Sintez i protivomikrobnaya aktivnost' zameshchennyh amidov i gidrazidov N-acil-5-bromantranilovyh kislot [Synthesis and antimicrobial activity of substituted amides and hydrazides of N-acyl-5-bromanthranilic acids]. Himiko-farmacevticheskij zhurnal [Chemical and Pharmaceutical Journal] 2007; 41 (9): 29-31. (In Russ.)
6. Podchezerceva A.V. Sintez, biologicheskaya aktivnost' i ustanovlenie kolichestvennyh sootnoshenij "struktura-protivovospalitel'naya aktivnost'" v ryadu N-acilantranilovyh kislot i ih amidov [Synthesis, biological activity and the establishment of quantitative correlations "structure-anti-inflammatory activity" in the row N-acylanthranilic acids and their amides]. Diss. na soiskanie uchenoj stepeni k.farm.n. [PhD (Pharmacy) Thesis]. Perm', 2004. (In Russ.)
7. Rukovodstvo po ehksperimental'nomu (doklinicheskomu) izucheniyu novyh farmakologicheskih veshchestv [Guidelines for experimental (preclinical) study of new pharmacological substances]. 2000. Moscow, Biont. (In Russ.)
8. Mohamed Eissa A.A., Soliman G.A., Khataibeh M.H. Design, Synthesis and Anti-inflammatory Activity of Structurally Simple Anthranilic Acid Congeners Devoid of Ulcerogenic Side Effects. Chemical and Pharmaceutical Bulletin 2012; 60 (10): 1290-1300.
9. Guilloteau J.P., Mathieu M., Giglione C., Blanc, V., Dupuy A., Chevrier M., Gil P., Famechon A., Meinnel T., Mikol V. Crystal structure of E.coli peptide deformylase complexed with antibiotic actinonin. J. Mol. Biol 2002; 320: 951-962.
10. Al-Rahawi K., Al-Kaf A., Shada Y., El-Nabtity S., El-Sayed K., Al-Shoba N. Synthesis and biological activities of 2-carboxyphenyloxamoylamino acids, their salts with 2-ethoxy-6,9-Diaminoacridine and D-glucosamine. Adv. Pharmacoepidem. Drug Safety 2013; 2 (2): 2-6.
11. Abouzid K.A., Khalil N.A., Ahmed E.M., Zaitone S.A. Synthesis and Biological Evaluation of New Heteroaryl Carboxylic Acid Derivatives as Anti-Inflammatory-Analgesic Agents. Chemical and Pharmaceutical Bulletin 2013; 61 (2): 222-228.
12. Kuldeep M., Pradeep K., Balasubramanian N., Synthesis, antimicrobial evaluation, ot-QSAR and mt-QSAR studies of 2-amino benzoic acid derivatives. Medicinal Chemistry Research 2012; 21 (3): 293-307.
13. Beniwal M., Lather V., Judge V., Jain N., Beniwal A. Anti-inflammatory, antimicrobial activity and QSAR studies of anthranilic acid derivatives. World journal of pharmacy and pharmaceutical sciences 2015; 4(09): 1443-1451.
14. Morris G.M., Huey R., Olson A.J. Using AutoDock for ligand-receptor docking. Curr. Protoc. Bioinformatics 2008; 11(13): 34-37.
15. El-Hashash M.A., Azab M.E., Faty R.A., Amr Ael-G. Synthesis, Antimicrobial and Anti-inflammatory Activity of Some New Benzoxazinone and Quinazolinone Candidates. Chemical and Pharmaceutical Bulletin 2016; 64 (3): 263-271.
16. Prudhomme M., Dauphin G., Guyot J., Jeminet G. Semisynthesis of A23187 (Calcimycin) analogs II. Introduction of a methyl group on the benzoxazole ring. The Journal of antibiotics 1984, 37 (6): 627-634.
17. Nadendla R.R., Mukkanti K., Sudhakar G. Rao. Microwave Synthesis of some new Quinazolinone Formazans for their Antimicrobial and Antihelminthic Activities. Current Trends in Biotechnology and Pharmacy 2010; 4 (1): 545-550.
18. Shahzad M., Jamshaid A. Synthesis, Antioxidant and Antimicrobial activity of 4-aminophenol and 2-aminobenzoic acid based novel azo compounds. Asian J. Chem. 2015; 27 (10): 3551-3554.
19. Sippl W., Contreras J.M., Parrot I., Rival Y.M., Wermuth C.G. Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors. Journal of Computer-Aided Molecular Design 2001; 15: 395-410.
20. Yoon H.J., Kim H.L., Lee S.K., Kim H.W. Crystal structure of peptide deformylase from Staphylococcus aureus in complex with actinonin, a naturally occurring antibacterial agent. Proteins 2004; 57: 639-642.