Authors
Machekhin V. A.
Doctor of Medicine, Chief Scientific Adviser1, Professor, Chair for Ophtalmology2
Fabrikantov O. L.
Doctor of Medicine, Director1, Head, Chair for Ophtalmology2
L'vov V. A.
Ophtalmologist1
1 - Federal State Autonomous Institution «S.N.Fedorov National Medical Research Center »MNTK «Eye Microsurgery» of the Ministry of Health of the Russian Federation, Tambov branch, Tambov, Russian Federation
2 - Derzhavin Tambov State University, Medical Institute, Tambov, Russia
Corresponding author
Machekhin Vladimir; e-mail: naukatmb@mail.ru
Conflict of interest
None declared.
Funding
The study had no sponsorship.
Abstract
The term «preperimetric glaucoma» first appeared in foreign literature at the end of the 20th century. Previous experience in analyzing the optic disc was mainly based on ophthalmoscopy, photography and stereophotography, planimetry and other difficult methods of investigation in glaucoma. The emergence of modern more accurate diagnostic methods allowed for the first time separating qualitative (subjective) and quantitative (objective) criteria for assessing the optic disc and the adjacent retina. It took years before ophthalmologists began to comprehend the meaning of the term and its role in glaucoma. This issue is the subject of this literature review, sources are presented in chronological order.
Key words
ophthalmology, preperimetric glaucoma, optic disc
DOI
References
1. Akopyan V.S., Semenova N.S., Filonenko I.V., Tsysar’ M.A. Otsenka kompleksa ganglioznykh kletok setchatki pri pervichnoy otkrytougol’noy glaukome. [Evaluation of ganglion cell complex measurements in primary open-angle glaucoma]. Oftal’mologiya [Ophthalmology] 2011; 8(1): 20-26. (In Russ.)
2. Angelov B., Petrova K. Opticheskaya kogerentnaya tomografiya i eyo rol’ v diagnostike glaznoy gipertenzii, preperimetricheskoy i perimetricheskoy glaukomy. [Optical coherence tomography and its role in the diagnosis of ocular hypertension, preperimetric and perimetric glaucoma]. Oftal’mologiya [Ophthalmology] 2015; 12(1): 46-56. (In Russ.)
3. Kurysheva N.I., Parshunina O.A., Ardzheinishvili T.D. Novyye tekhnologii v diagnostike pervichnoy otkrytougol’noy glaukomy. [New technologies in primary open-angle glaucoma diagnostics]. Natsional’nyy zhurnal glaucoma [National journal of glaucoma] 2015; 14(2): 22-31. (In Russ.)
4. Kurysheva N.I., Parshunina O.A., Maslova E.V. Diagnosticheskaya znachimost’ issledovaniya glaznogo krovotoka v rannem vyyavlenii pervichnoy otkrytougol’noy glaukomy. [Role of eye hemoperfusion in the progress of primary open-angle glaucoma]. Natsional’nyy zhurnal glaucoma [National journal of glaucoma] 2015; 14(3): 19-29. (In Russ.)
5. Machekhin V.A., Fabrikantov O.L. Tsvetnaya topografiya patologicheskikh parametrov DZN s pomoshch’yu lazernogo skaniruyushchego retinotomografa HRT III [Color topography of the pathologic parameters of the OD by means of the laser scanning retinotomograph HRT III. Bulgarian Forum Glaucoma. Edition of the National Academy Glaucoma Foundation 2014; 4(1): 13-20. (In Russ.)
6. Machekhin V.A., Fabrikantov O.L. K chemu obyazyvayet oftal’mologa diagnoz «podozreniye na glaukomu» [What is an ophthalmologist obliged to do in case of «suspected glaucoma» diagnosis]. Meditsina [Medicine] 2017; (3): 108-124. (In Russ.)
7. L’vov V.A., Fabrikantov O.L., Machekhin V.A. Sravnitel’naya otsenka rezul’tatov issledovaniya glaukomy s pomoshch’yu Geydel’bergskoy lazernoy retinotomografii (HRT-3) i opticheskoy kogerentnoy tomografii (RTVUE-100 OCT). [Comparative assessment of glaucoma study outcomes using Heidelberg laser retinal tomography (HRT 3) and optical coherence tomography (RTVUE-100)]. Vestnik VolgGMU [Journal of VolgSMU] 2018; 68(4): 21-24. (In Russ.)
8. Aizawa N., Kunikata H., Shiga Y. et al. Preperimetric Glaucoma Prospective Observational Study (PPGPS): Design, baseline characteristics, and therapeutic effect of tafluprost in preperimetric glaucoma eye. PLoS One 2017; 12(12): e0188692. doi: 10.1371/journal.pone.0188692.
9. Akil H., Al-Sheikh M., Falavarjani K.G. et al. Choroidal thickness and structural glaucoma parameters in glaucomatous, preperimetric glaucomatous, and healthy eyes using swept-source OCT. Eur J Ophthalmol 2017; 27(5): 548-554. doi: 10.5301/ejo.5000926.
10. Asaoka R., Iwase A., Hirasawa K. et al. Identifying ‘‘Preperimetric’’ Glaucoma in Standard Automated Perimetry Visual Fields. Invest Ophthalmol Vis Sci 2014; 55: 7814-7820. doi: 10.1167/iovs.14-15120.
11. Aydoğan T., Betül İ., Akçay S. et al. Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma. Indian J Ophthalmol 2017; 65(11): 1143-1150.
12. Baraibar B., Sánchez-Cano A., Pablo L.E., Honrubia F.M. Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors. J Glaucoma 2007; 16(8): 659-664.
13. Begum V.U., Addepalli U.K., Yadav R.K. et al. Ganglion Cell-Inner Plexiform Layer Thickness of High Definition Optical Coherence Tomography in Perimetric and Preperimetric Glaucoma. Invest Ophthalmol Vis Sci 2014; 55: 4768-4775. doi: 10.1167/iovs.14-14598.
14. Begum V.U., Addepalli U.K., Senthil S., et al. Optic nerve head parameters of high-definition optical coherence tomography and Heidelberg retina tomogram in perimetric and preperimetric glaucoma. Indian J Ophthalmol 2016; 64(4): 277-284.
15. Burk R.O., Rohrschneider K, Takamoto T, et al. Laser scanning tomography and stereophotogrammetry in three-dimensional optic disc analysis. Graefes Arch Clin Exp Ophthalmol 1993; 231: 193-198.
16. Choi J.A., Lee N.Y., Park C.K. Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol 2009; 53(1): 24-30. doi: 10.1007/s10384-008-0604-0. Epub 2009 Jan 30.
17. Cennamo G., Montorio D., Velotti N. Optical coherence tomography angiography in preperimetric open angle glaucoma. Graefes Arch Clin Exp ophthalmol 2017; 255(9): 1797-1793. doi: 10.1007/s00417-017-3709-7.
18. Daga F.B., Gracitelli C.P.B., Diniz-Filho A. et al. Is vision-related quality of life impaired in patients with preperimetric glaucoma? Br J Ophthalmol 2018; Available at: www.pubfacts.com/detail/30049801/Is-vision-related-quality-of-life-impaired-in-patients-with-preperimetric-glaucoma. doi: 10.1136/bjophthalmol-2018-312357.
19. Dichtl A., Jonas J.B., Mardin C.Y. Comparison between tomographic scanning evaluation and photographic measurement of the neuroretinal rim. Am J Ophthalmol 1996; 121: 494-501.
20. Ferreras A., Polo V., Jose´ M. Larrosa et al. Can Frequency-doubling Technology and Short-wavelength Automated Perimetries Detect Visual Field Defects Before Standard Automated Perimetry in Patients with Preperimetric Glaucoma? J. Glaucoma 2007; 16: 372-383.
21. Hirashima T., Hangai M., Nukada M. et al. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol 2013; 251(1): 129-37. doi: 10.1007/s00417-012-2076-7.
22. Inuzuka H., Kawase K., Sawada A. et al. Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis. Journal of Glaucoma 2016; 25(6): e591–e595. doi: 10.1097/IJG.0000000000000260 ,
23. Hollo G., Szabo A., Vargha P. Scanning laser polarimetry versus frequency-doubling perimetry and conventional threshold perimetry: Changes during a 12-month follow up in preperimetric glaucoma. A pilot study. Acta Ophthalmol Scand 2001; 79: 403-407.
24. Horn F.K., Mardin C.Y., Bendschneider D. et al. Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma. Eye 2011; 25: 17-29.
25. Hua R., Gangwani R., Guo L. et al. Detection of preperimetric glaucoma using Bruch membrane opening, neural canal and posterior pole asymmetry analysis of optical coherence tomography. Scientific Reports 2016; (6): 21743. doi: 10.1038/srep21743.
26. Jeoung J.W., Park K.H. Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci 2010; 51(2): 938-45. doi: 10.1167/iovs.08-3335.
27. JungY., Park H-Y., Park Y.R. et al. Usefulness of 10-2 Matrix Frequency Doubling Technology Perimetry for Detecting Central Visual Field Defects in Preperimetric Glaucoma Patients. Scientific reports 2017; (7): 14622. doi:10.1038/s41598-017-15329-1.
28. Kaushik S., Kataria P., Jain V. et al. Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosis. Indian J Ophthalmol 2018; 66(4): 511-516. doi: 10.4103/ijo.IJO_1039_17.
29. Kim H.G., Heo H., Park S.W. Comparison of scanning laser polarimetry and optical coherence tomography in preperimemetric glaucoma. Optom Vis Sci 2011; 88(1): 124-129. doi: 1097/OPX.0b013e3181fdef9c.
30. Kim T.W., Kagemann L., Michaël J. A. et al. Imaging of the Lamina Cribrosa in Glaucoma: Perspectives of Pathogenesis and Clinical Applications. Curr Eye Res 2013; 38(9): 903-909. doi:10.3109/02713683.2013.800888.
31. Kim S.B., Lee E.J., Han J.C et al. Comparison of peripapillary vessel density between preperimetric and perimetric glaucoma evaluated by OCT-angiography. PLoS ONE 2017; 12(8): e0184297. doi: 10.1371/journal.pone.018429.
32. Kim H.J., Song Y.J., Kim Y.K. et al. Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma. J Ophthalmol 2017; 61(4): 307-313. doi: 10.1007/s10384-017-0509-x.
33. Kreuz A.C., de Moraes C.G., Hatanaka M. et al Macular and Multifocal PERG and FD-OCT in Preperimetric and Hemifield Loss Glaucoma. J Glaucoma 2018; 27(2): 121-132. doi: 10.1097/IJG.0000000000000857.
34. Lee W.J., Kim Y.K., Jeoung J.W. et al. Can Probability Maps of Swept-Source Optical Coherence Tomography Predict Visual Field Changes in Preperimetric Glaucoma? Invest Ophthalmol Vis Sci. 2017; 58(14): 6257-6264. doi: 10.1167/iovs.17-22697.
35. Lee W.J., Na K.I., Kim Y.K. et al. Diagnostic Ability of Wide-field Retinal Nerve Fiber Layer Maps Using Swept-Source Optical Coherence Tomography for Detection of Preperimetric and Early Perimetric Glaucoma. Glaucoma 2017; 26(6): 577-585. doi: 10.1097/IJG.0000000000000662.
36. Lisboa R., Leite M.T., Zangwill L.M. et al. Diagnosing Preperimetric Glaucoma with Spectral Domain Optical Coherence Tomography Ophthalmology 2012; 119(11): 2261-2269. doi: 10.1016/j.ophtha.2012.06.009.
37. Mardin C.Y., Horn F.K., Jonas J.B. et al, Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthalmol 1999; 83: 299-304.
38. Mikelberg F.S., Parfitt C.M., Swindale N.V. et al. Ability of the Heidelberg retina tomograph to detect early glaucomatous field loss. J Glaucoma 1995; 4: 242-247.
39. Moreno-Monta J., Garcıa-Nieva A., Osio I.A. et al. Evaluation of RETICs Glaucoma Diagnostic Calculators in Preperimetric Glaucoma. Trans Vis Sci Tech 2018; 7(6): 13. doi: 10.1167/tvst.7.6.13.
40. Na J.H., Lee K., Lee J.R., Baek S. et al Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fibre defects by spectral-domain optical coherence tomography. Clin Exp Ophthalmol 2013; 41(9):870-80. doi: 10.1111/ceo.12142.
41. Najjar R.P., Sharma S., Drouet M. et al. Disrupted Eye Movements in Preperimetric Primary Open Angle Glaucoma. Invest Ophthalmol Vis Sci 2017; 58: 2430-2437. doi: 10.1167/iovs.16-21002.
42. Nakano N., Hangai M., Nakanishi H. et al. Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography. Ophthalmology 2011; 118(12): 2414-26. doi: 10.1016/j.ophtha.2011.06.015.
43. Rao H.L., Addepalli U.K., Chaudhary S. et al. Ability of different scanning protocols of spectral domain optical coherence tomography to diagnose preperimetric glaucoma. Invest. Ophthalmol Vis Sci 2013; 54: 7252-7257. doi: 10.1167/iovs.13-12731.
44. Rolle T., Briamonte C., Curto D., Grignolo F.M. Ganglion cell complex and retinal nerve fiber layer measured by fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma Clinical Ophthalmology 2011; (5): 961-969.
45. Suh M.H., Zangwill L.M., Isabel P. et al. Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmology 2016; 123(11): 2309-2317. doi: 10.1016/j.ophtha.2016.07.023.
46. Sawada A., Manabe Y., Yamamoto T., Nagata C. Long-term clinical course of normotensive preperimetric glaucoma. Br J Ophthalmol 2017; 101(12): 1649-1653. doi: 10.1136/bjophthalmol-2016-309401.
47. Schumann J.S., Hee M.R., Puliafito C.A. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113: 586-96.
48. Seol B.R., Jeoung J.W., Park K.H. Glaucoma Detection Ability of Macular Ganglion Cell-Inner Plexiform Layer Thickness in Myopic Preperimetric Glaucoma. Invest Ophthalmol Vis Sci 2015; 56: 8306-8313. doi: 10.1167/iovs.15-18141.
49. Shiga Y., Kunikata H., Aizawa N., et al. Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, is Significantly Reduced in Preperimetric Glaucoma. Curr Eye Res 2016; 41(11): 1447-1453. doi: 10.3109/02713683.2015.1127974.
50. Shiga Y., Aizawa N., Tsuda S., et al. Preperimetric Glaucoma Prospective Study (PPGPS): Predicting Visual Field Progression with Basal Optic Nerve Head Blood Flow in Normotensive PPG Eyes. Transl Vis Sci Technol 2018; 7(1): 11. doi: 10.1167/tvst.7.1.11.
51. Sriram P., Klistorner A., Graham S. et al. Optimizing the Detection of Preperimetric Glaucoma by Combining Structural and Functional Tests. Invest Ophthalmol Vis Sci 2015; 56: 7794-7800. doi: 10.1167/iovs.15-16721.
52. Tjon-Fo-Sang M.J., de Vries J., Lemji H.G. Measurement by nerve fiber analyzer of retinal nerve fiber layer thickness in normal subjects and patients with ocular hypertension. Am J Ophthalmol 1996; 122: 220-7.
53. Weinreb R.N., Friedman D.S., Fechtner R.D. et al. Risk assessment in the management of patients with ocular hypertension. Am J Ophthalmol 2004; 138: 458-467. doi: 10.1016/j.ajo.2004.04.054.