AboutContactsEditorial StaffEditorial CouncilArchiveFor AuthorsFor Reviewers

Femtosecond laser in corneal surgery

Journal «MEDICINA» ¹ 2, 2018, pp.10-34 (Research)

Authors

Mamikonjan V. R.
Med.Sc.D., Prof., Director1

Karamjan A. A.
Med.Sc.D., Prof., Main Research Associate1

Trufanov S. V.
Med.Sc.D., Leading Research Associate1

Osipjan G. A.
Ph.D., Senior Research Associate1

Petrov S. Yu.
Med.Sc.D., Leading Research Associate1

Safonova D. M.
Ph.D., Junior Research Associate1

1 - Scientific Research Institute of Eye Diseases, Rossolimo st., 11 À, B, 119021 Moscow, Russian Federation

Corresponding author

Darya M. Safonova; e-mail: dmsafonova@gmail.com

Conflict of interest

None declared.

Funding

The study had no sponsorship.

Abstract

The review is dedicated to a wide range of femtosecond laser applications in corneal surgery. It focuses on refractive surgery, featuring a detailed account of femtoLASIK advantages and specific postoperative complications, refractive lenticule Extraction (ReLEx) and its SMILE modification (small incision lenticule extraction), as well as corneal inlays use for presbyopia correction. The review also recounts femtosecond laser use in keratoplasty (PKP, DALK, DSAEK): its vantage points, limitations and postoperative prognosis.

Key words

Femtosecond laser, Refractive surgery, Corneal surgery, femtoLASIK, SMILE, Penetrating keratoplasty, PKP, DALK, DSAEK

DOI

References

1. Abbey A., Ide T., Kymionis G.D., Yoo S.H. Femtosecond laser-assisted astigmatic keratotomy in naturally occurring high astigmatism. The British journal of ophthalmology 2009; 93 (12): 1566-1569.

2. Alio J.L., Abbouda A., Huseynli S., Knorz M.C., et al. Removability of a small aperture intracorneal inlay for presbyopia correction. Journal of refractive surgery 2013; 29 (8): 550-556.

3. Arba Mosquera S., Alio J.L. Presbyopic correction on the cornea. Eye and vision 2014; 1: 5.

4. Bahar I., Kaiserman I., McAllum P., Rootman D. Femtosecond laser-assisted penetrating keratoplasty: stability evaluation of different wound configurations. Cornea 2008; 27 (2): 209-211.

5. Bahar I., Levinger E., Kaiserman I., Sansanayudh W., et al. IntraLase-enabled astigmatic keratotomy for postkeratoplasty astigmatism. American journal of ophthalmology 2008; 146 (6): 897-904 e891

6. Baily C., Kohnen T., O'Keefe M. Preloaded refractive-addition corneal inlay to compensate for presbyopia implanted using a femtosecond laser: one-year visual outcomes and safety. Journal of cataract and refractive surgery 2014; 40 (8): 1341-1348.

7. Bamba S., Rocha K.M., Ramos-Esteban J.C., Krueger R.R. Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser. Journal of cataract and refractive surgery 2009; 35 (6): 1082-1086.

8. Battat L., Macri A., Dursun D., Pflugfelder S.C. Effects of laser in situ keratomileusis on tear production, clearance, and the ocular surface. Ophthalmology 2001; 108 (7): 1230-1235.

9. Blum M., Kunert K., Schroder M., Sekundo W. Femtosecond lenticule extraction for the correction of myopia: preliminary 6-month results. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 2010; 248 (7): 1019-1027

10. Buzzonetti L., Petrocelli G., Laborante A., Mazzilli E., et al. Arcuate keratotomy for high postoperative keratoplasty astigmatism performed with the intralase femtosecond laser. Journal of refractive surgery 2009; 25 (8): 709-714.

11. Buzzonetti L., Petrocelli G., Valente P. Femtosecond laser and big-bubble deep anterior lamellar keratoplasty: a new chance. Journal of ophthalmology 2012; 2012: 264590.

12. Chan A., Ou J., Manche E.E. Comparison of the femtosecond laser and mechanical keratome for laser in situ keratomileusis. Archives of ophthalmology 2008; 126 (11): 1484-1490.

13. Coskunseven E., Kymionis G.D., Tsiklis N.S., Atun S., et al. One-year results of intrastromal corneal ring segment implantation (KeraRing) using femtosecond laser in patients with keratoconus. American journal of ophthalmology 2008; 145 (5): 775-779.

14. Coskunseven E., Kymionis G.D., Tsiklis N.S., Atun S., et al. Complications of intrastromal corneal ring segment implantation using a femtosecond laser for channel creation: a survey of 850 eyes with keratoconus. Acta ophthalmologica 2011; 89 (1): 54-57.

15. Demirok A., Ozgurhan E.B., Agca A., Kara N., et al. Corneal sensation after corneal refractive surgery with small incision lenticule extraction. Optometry and vision science : official publication of the American Academy of Optometry 2013; 90 (10): 1040-1047.

16. Denoyer A., Landman E., Trinh L., Faure J.F., et al. Dry eye disease after refractive surgery: comparative outcomes of small incision lenticule extraction versus LASIK. Ophthalmology 2015; 122 (4): 669-676.

17. Durrie D.S., Kezirian G.M. Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. Journal of cataract and refractive surgery 2005; 31 (1): 120-126.

18. Farid M., Kim M., Steinert R.F. Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report. Ophthalmology 2007; 114 (12): 2208-2212.

19. Farid M., Steinert R.F., Gaster R.N., Chamberlain W., et al. Comparison of penetrating keratoplasty performed with a femtosecond laser zig-zag incision versus conventional blade trephination. Ophthalmology 2009; 116 (9): 1638-1643.

20. Ganesh S., Gupta R. Comparison of visual and refractive outcomes following femtosecond laser-assisted LASIK with SMILE in patients with myopia or myopic astigmatism. Journal of refractive surgery 2014; 30 (9): 590-596.

21. Gatinel D., Saad A., Guilbert E., Rouger H. Unilateral rainbow glare after uncomplicated femto-LASIK using the FS-200 femtosecond laser. Journal of refractive surgery 2013; 29 (7): 498-501.

22. Gauthier C.A., Holden B.A., Epstein D., Tengroth B., et al. Role of epithelial hyperplasia in regression following photorefractive keratectomy. The British journal of ophthalmology 1996; 80 (6): 545-548.

23. Gil-Cazorla R., Teus M.A., de Benito-Llopis L., Fuentes I. Incidence of diffuse lamellar keratitis after laser in situ keratomileusis associated with the IntraLase 15 kHz femtosecond laser and Moria M2 microkeratome. Journal of cataract and refractive surgery 2008; 34 (1): 28-31.

24. Gil-Cazorla R., Teus M.A., de Benito-Llopis L., Mikropoulos D.G. Femtosecond laser vs mechanical microkeratome for hyperopic laser in situ keratomileusis. American journal of ophthalmology 2011; 152 (1): 16-21 e12.

25. Golas L., Manche E.E. Dry eye after laser in situ keratomileusis with femtosecond laser and mechanical keratome. Journal of cataract and refractive surgery 2011; 37 (8): 1476-1480.

26. Guell J.L., Vazquez M. Correction of high astigmatism with astigmatic keratotomy combined with laser in situ keratomileusis. Journal of cataract and refractive surgery 2000; 26 (7): 960-966.

27. Han D.C., Chen J., Htoon H.M., Tan D.T., et al. Comparison of outcomes of conventional WaveLight((R)) Allegretto Wave((R)) and Technolas((R)) excimer lasers in myopic laser in situ keratomileusis. Clinical ophthalmology 2012; 6: 1159-1168.

28. Harissi-Dagher M., Azar D.T. Femtosecond laser astigmatic keratotomy for postkeratoplasty astigmatism. Canadian journal of ophthalmology Journal canadien d'ophtalmologie 2008; 43 (3): 367-369.

29. Heinzelmann S., Maier P., Bohringer D., Auw-Hadrich C., et al. Visual outcome and histological findings following femtosecond laser-assisted versus microkeratome-assisted DSAEK. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 2013; 251 (8): 1979-1985.

30. Hoffart L., Proust H., Matonti F., Conrath J., et al. Correction of postkeratoplasty astigmatism by femtosecond laser compared with mechanized astigmatic keratotomy. American journal of ophthalmology 2009; 147 (5): 779-787, 787 e771.

31. Ignacio T.S., Nguyen T.B., Chuck R.S., Kurtz R.M., et al. Top hat wound configuration for penetrating keratoplasty using the femtosecond laser: a laboratory model. Cornea 2006; 25 (3): 336-340.

32. Javaloy J., Vidal M.T., Abdelrahman A.M., Artola A., et al. Confocal microscopy comparison of intralase femtosecond laser and Moria M2 microkeratome in LASIK. Journal of refractive surgery 2007; 23 (2): 178-187.

33. Jones Y.J., Goins K.M., Sutphin J.E., Mullins R., et al. Comparison of the femtosecond laser (IntraLase) versus manual microkeratome (Moria ALTK) in dissection of the donor in endothelial keratoplasty: initial study in eye bank eyes. Cornea 2008; 27 (1): 88-93.

34. Kanellopoulos A.J. Topography-guided hyperopic and hyperopic astigmatism femtosecond laser-assisted LASIK: long-term experience with the 400 Hz eye-Q excimer platform. Clinical ophthalmology 2012; 6: 895-901.

35. Kanellopoulos A.J., Asimellis G. Epithelial remodeling after femtosecond laser-assisted high myopic LASIK: comparison of stand-alone with LASIK combined with prophylactic high-fluence cross-linking. Cornea 2014; 33 (5): 463-469.

36. Kanellopoulos A.J., Asimellis G. Essential opaque bubble layer elimination with novel LASIK flap settings in the FS200 Femtosecond Laser. Clinical ophthalmology 2013; 7: 765-770.

37. Kanellopoulos A.J., Asimellis G. FS200 femtosecond laser LASIK flap digital analysis parameter evaluation: comparing two different types of patient interface applanation cones. Clinical ophthalmology 2013; 7: 1103-1108.

38. Kanellopoulos A.J., Asimellis G. Long-term bladeless LASIK outcomes with the FS200 Femtosecond and EX500 Excimer Laser workstation: the Refractive Suite. Clinical ophthalmology 2013; 7: 261-269.

39. Kezirian G.M., Stonecipher K.G. Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis. Journal of cataract and refractive surgery 2004; 30 (4): 804-811.

40. Kiraly L., Herrmann C., Amm M., Duncker G. [Reduction of astigmatism by arcuate incisions using the femtosecond laser after corneal transplantation] // Klinische Monatsblatter fur Augenheilkunde 2008; 225 (1): 70-74.

41. Knox Cartwright N.E., Tyrer J.R., Jaycock P.D., Marshall J. Effects of variation in depth and side cut angulations in LASIK and thin-flap LASIK using a femtosecond laser: a biomechanical study. Journal of refractive surgery 2012: 28 (6): 419-425.

42. Kook D., Buhren J., Klaproth O.K., Bauch A.S., et al. [Astigmatic keratotomy with the femtosecond laser: correction of high astigmatisms after keratoplasty] Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 2011; 108 (2): 143-150.

43. Krachmer J.H., Fenzl R.E. Surgical correction of high postkeratoplasty astigmatism. Relaxing incisions vs wedge resection. Archives of ophthalmology 1980; 98 (8): 1400-1402.

44. Krueger R.R., Thornton I.L., Xu M., Bor Z., et al. Rainbow glare as an optical side effect of IntraLASIK. Ophthalmology 2008; 115 (7): 1187-1195 e1181.

45. Kullman G., Pineda R., 2nd. Alternative applications of the femtosecond laser in ophthalmology. Seminars in ophthalmology 2010; 25 (5-6): 256-264.

46. Kumar N.L., Kaiserman I., Shehadeh-Mashor R., Sansanayudh W., et al. IntraLase-enabled astigmatic keratotomy for post-keratoplasty astigmatism: on-axis vector analysis. Ophthalmology 2010; 117 (6): 1228-1235 e1221.

47. Kymionis G.D., Kontadakis G.A., Naoumidi I., Kankariya V.P., et al. Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome. The British journal of ophthalmology 2014; 98 (1): 133-137.

48. Kymionis G.D., Yoo S.H., Ide T., Culbertson W.W. Femtosecond-assisted astigmatic keratotomy for post-keratoplasty irregular astigmatism. Journal of cataract and refractive surgery 2009; 35 (1): 11-13.

49. Levinger E., Trivizki O., Levinger S., Kremer I. Outcome of «mushroom» pattern femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty in patients with keratoconus. Cornea 2014; 33 (5): 481-485.

50. Li M., Zhao J., Shen Y., Li T., et al. Comparison of dry eye and corneal sensitivity between small incision lenticule extraction and femtosecond LASIK for myopia. PloS one 2013; 8 (10): e77797.

51. Lindstrom R.L., Macrae S.M., Pepose J.S., Hoopes P.C., Sr. Corneal inlays for presbyopia correction. Current opinion in ophthalmology 2013; 24 (4): 281-287.

52. Maus M., Fawzy N., Pei R. Retrospective analysis of femtosecond laser flap accuracy in patients having LASIK. Journal of cataract and refractive surgery 2014; 40 (12): 2158-2160.

53. McAlinden C., Moore J.E. Multifocal intraocular lens with a surface-embedded near section: Short-term clinical outcomes. Journal of cataract and refractive surgery 2011; 37 (3): 441-445.

54. McAlinden C., Pesudovs K., Moore J.E. The development of an instrument to measure quality of vision: the Quality of Vision (QoV) questionnaire. Investigative ophthalmology & visual science 2010; 51 (11): 5537-5545.

55. Montes-Mico R., Rodriguez-Galietero A., Alio J.L., Cervino A. Contrast sensitivity after LASIK flap creation with a femtosecond laser and a mechanical microkeratome. Journal of refractive surgery 2007; 23 (2): 188-192.

56. Moshirfar M., Gardiner J.P., Schliesser J.A., Espandar L., et al. Laser in situ keratomileusis flap complications using mechanical microkeratome versus femtosecond laser: retrospective comparison. Journal of cataract and refractive surgery 2010; 36 (11): 1925-1933.

57. Mulet M.E., Alio J.L., Knorz M.C. Hydrogel intracorneal inlays for the correction of hyperopia: outcomes and complications after 5 years of follow-up. Ophthalmology 2009; 116 (8): 1455-1460, 1460 e1451.

58. Muller L.J., Pels E., Vrensen G.F. The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. The British journal of ophthalmology 2001; 85 (4): 437-443.

59. Munoz G., Albarran-Diego C., Ferrer-Blasco T., Garcia-Lazaro S., et al. Long-term comparison of corneal aberration changes after laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser flap creation. Journal of cataract and refractive surgery 2010; 36 (11): 1934-1944.

60. Munoz G., Albarran-Diego C., Sakla H.F., Javaloy J., et al. Transient light-sensitivity syndrome after laser in situ keratomileusis with the femtosecond laser Incidence and prevention. Journal of cataract and refractive surgery 2006; 32 (12): 2075-2079.

61. Pajic B., Vastardis I., Pajic-Eggspuehler B., Gatzioufas Z., et al. Femtosecond laser versus mechanical microkeratome-assisted flap creation for LASIK: a prospective, randomized, paired-eye study. Clinical ophthalmology 2014; 8: 1883-1889.

62. Paschalis E.I., Aristeidou A.P., Foudoulakis N.C., Razis L.A. Corneal flap assessment with Rondo microkeratome in laser in situ keratomileusis. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 2011; 249 (2): 289-295.

63. Paschalis E.I., Labiris G., Aristeidou A.P., Foudoulakis N.C., et al. Laser in situ keratomileusis flap-thickness predictability with a pendular microkeratome. Journal of cataract and refractive surgery 2011; 37 (12): 2160-2166.

64. Patel S.V., Maguire L.J., McLaren J.W., Hodge D.O., et al. Femtosecond laser versus mechanical microkeratome for LASIK: a randomized controlled study. Ophthalmology 2007; 114 (8): 1482-1490.

65. Pinero D.P., Alio J.L., El Kady B., Coskunseven E., et al. Refractive and aberrometric outcomes of intracorneal ring segments for keratoconus: mechanical versus femtosecond-assisted procedures. Ophthalmology 2009; 116 (9): P. 1675-1687.

66. Price F.W., Jr., Price M.O. Femtosecond laser shaped penetrating keratoplasty: one-year results utilizing a top-hat configuration American journal of ophthalmology 2008; 145 (2): 210-214.

67. Price F.W., Jr., Price M.O., Grandin J.C., Kwon R. Deep anterior lamellar keratoplasty with femtosecond-laser zigzag incisions. Journal of cataract and refractive surgery 2009; 35 (5): 804-808.

68. Radner W., Mallinger R. Interlacing of collagen lamellae in the midstroma of the human cornea. Cornea 2002; 21 (6): 598-601.

69. Randleman J.B., Dawson D.G., Grossniklaus H.E., McCarey B.E., et al. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. Journal of refractive surgery 2008; 24 (1): S85-89.

70. Ratkay-Traub I., Ferincz I.E., Juhasz T., Kurtz R.M., et al. First clinical results with the femtosecond neodynium-glass laser in refractive surgery. Journal of refractive surgery 2003; 19 (2): 94-103.

71. Reinstein D.Z., Archer T.J., Gobbe M. Refractive and topographic errors in topography-guided ablation produced by epithelial compensation predicted by 3D Artemis VHF digital ultrasound stromal and epithelial thickness mapping. Journal of refractive surgery 2012; 28 (9): 657-663.

72. Rosa A.M., Neto Murta J., Quadrado M.J., Tavares C., et al. Femtosecond laser versus mechanical microkeratomes for flap creation in laser in situ keratomileusis and effect of postoperative measurement interval on estimated femtosecond flap thickness. Journal of cataract and refractive surgery 2009; 35 (5): 833-838.

73. Salomao M.Q., Ambrosio R., Jr., Wilson S.E. Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser. Journal of cataract and refractive surgery 2009; 35 (10): 1756-1760.

74. Salomao M.Q., Wilson S.E. Femtosecond laser in laser in situ keratomileusis. Journal of cataract and refractive surgery 2010; 36 (6): 1024-1032.

75. Santhiago M.R., Kara-Junior N., Waring G.O.t. Microkeratome versus femtosecond flaps: accuracy and complications. Current opinion in ophthalmology 2014; 25 (4): 270-274.

76. Santhiago M.R., Wilson S.E. Cellular effects after laser in situ keratomileusis flap formation with femtosecond lasers: a review. Cornea 2012; 31 (2): 198-205.

77. Sarayba M.A., Ignacio T.S., Binder P.S., Tran D.B. Comparative study of stromal bed quality by using mechanical, IntraLase femtosecond laser 15- and 30-kHz microkeratomes. Cornea 2007; 26 (4): 446-451.

78. Schlote T., Kynigopoulos M. [LASIK and Femto-LASIK]. Klinische Monatsblatter fur Augenheilkunde 2016; 233 (9): e29-e39

79. Sekundo W., Kunert K., Russmann C., Gille A., et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. Journal of cataract and refractive surgery 2008; 34 (9): 1513-1520.

80. Sekundo W., Kunert K.S., Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. The British journal of ophthalmology 2011; 95 (3): 335-339.

81. Seyeddain O., Hohensinn M., Riha W., Nix G., et al. Small-aperture corneal inlay for the correction of presbyopia: 3-year follow-up. Journal of cataract and refractive surgery 2012; 38 (1): 35-45.

82. Shousha M.A., Yoo S.H., Kymionis G.D., Ide T., et al. Long-term results of femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology 2011; 118 (2): 315-323.

83. Soong H.K., Malta J.B. Femtosecond lasers in ophthalmology. American journal of ophthalmology 2009; 147 (2): 189-197 e182.

84. Spadea L., Fasciani R., Necozione S., Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. Journal of refractive surgery 2000; 16 (2): 133-139.

85. Steinert R.F., Ignacio T.S., Sarayba M.A. «Top hat»-shaped penetrating keratoplasty using the femtosecond laser. American journal of ophthalmology 2007; 143 (4): 689-691.

86. Stern D., Schoenlein R.W., Puliafito C.A., Dobi E.T., et al. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm. Archives of ophthalmology 1989; 107 (4): 587-592.

87. Stonecipher K.G., Dishler J.G., Ignacio T.S., Binder P.S. Transient light sensitivity after femtosecond laser flap creation: clinical findings and management. Journal of cataract and refractive surgery 2006; 32 (1): 91-94.

88. Talamo J.H., Meltzer J., Gardner J. Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes. Journal of refractive surgery 2006; 22 (6): 556-561.

89. Tanna M., Schallhorn S.C., Hettinger K.A. Femtosecond laser versus mechanical microkeratome: a retrospective comparison of visual outcomes at 3 months. Journal of refractive surgery 2009; 25 (7) Suppl.: S668-671.

90. Toda I., Asano-Kato N., Komai-Hori Y., Tsubota K. Dry eye after laser in situ keratomileusis. American journal of ophthalmology 2001; 132 (1): 1-7.

91. Tomita M., Huseynova T. Evaluating the short-term results of KAMRA inlay implantation using real-time optical coherence tomography-guided femtosecond laser technology. Journal of refractive surgery 2014; 30 (5): 326-329.

92. Tomita M., Kanamori T., Waring G.O.t., Yukawa S., et al. Simultaneous corneal inlay implantation and laser in situ keratomileusis for presbyopia in patients with hyperopia, myopia, or emmetropia: six-month results. Journal of cataract and refractive surgery 2012; 38 (3): 495-506.

93. Tran D.B., Sarayba M.A., Bor Z., Garufis C., et al. Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: potential impact on wavefront-guided laser in situ keratomileusis. Journal of cataract and refractive surgery 2005; 31 (1): 97-105.

94. Utine C.A., Altunsoy M., Basar D. Visante anterior segment OCT in a patient with gas bubbles in the anterior chamber after femtosecond laser corneal flap formation. International ophthalmology 2010; 30 (1): 81-84.

95. Vestergaard A.H., Gronbech K.T., Grauslund J., Ivarsen A.R., et al. Subbasal nerve morphology, corneal sensation, and tear film evaluation after refractive femtosecond laser lenticule extraction. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 2013; 251 (11): 2591-2600.

96. Vetter J.M., Butsch C., Faust M., Schmidtmann I., et al. Irregularity of the posterior corneal surface after curved interface femtosecond laser-assisted versus microkeratome-assisted descemet stripping automated endothelial keratoplasty. Cornea 2013; 32 (2): 118-124.

97. Waring G.O.t., Klyce S.D. Corneal inlays for the treatment of presbyopia. International ophthalmology clinics 2011; 51 (2): 51-62.

98. Wu E. Femtosecond-assisted astigmatic keratotomy. International ophthalmology clinics 2011; 51 (2): 77-85.

99. Xu Y., Yang Y. Dry eye after small incision lenticule extraction and LASIK for myopia. Journal of refractive surgery 2014; 30 (3): 186-190.

100. Yoo S.H., Kymionis G.D., Koreishi A., Ide T., et al. Femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology 2008; 115 (8): 1303-1307, 1307 e1301.

101. Yu C.Q., Manche E.E. A comparison of LASIK flap thickness and morphology between the Intralase 60- and 150-kHz femtosecond lasers. Journal of refractive surgery 2014; 30 (12): 827-830.

102. Zhang Y., Chen Y.G., Xia Y.J. Comparison of corneal flap morphology using AS-OCT in LASIK with the WaveLight FS200 femtosecond laser versus a mechanical microkeratome. Journal of refractive surgery 2013; 29 (5): 320-324.

103. Zheng Y., Zhou Y., Zhang J., Liu Q., et al. Comparison of laser in situ keratomileusis flaps created by 2 femtosecond lasers. Cornea 2015; 34 (3): 328-333.