AboutContactsEditorial StaffEditorial CouncilArchiveFor AuthorsFor Reviewers

Studies of luminescence and structure of the eye tissues under mechanical stresses

Journal «MEDICINA» ¹ 3, 2017, pp.38-57 (Research)

Authors

Bubnova I. A.
Med.Sc.D., leading research associate1

Semchishen V. A.
Ph.D., leading research associate2

Sviridov A. P.
Ph.D., leading research associate2

Khaydukov E. V.
senior research associate2

Novikov I. A.
senior research associate1

Petrov S. Yu.
Ph.D., leading research associate1

Pakhomova N. A.
postgraduate student1

Volzhanin A. V.
resident1

1 - Scientific Research Institute of Eye Diseases, 11 A,B, Rossolimo St., Moscow, Russian Federation, 119021
2 - Institute of Photonic Technologies of Federal Research Centre «Crystallography and Photonics» of Russian Academy of Sciences, 2 Pionerskaya str., Troitsk, Moscow, Russian Federation, 142190

Abstract

Aim. To study the spectral states of polarization of the luminescence of the fibrous membranes of the eye ex vivo stimulated by linearly polarized light as a function of intraocular pressure. To study the changes in the structure of the collagen matrix of the cornea and sclera of the eye under mechanical stresses with the help of a confocal microscope and generation of a second harmonic. To evaluate the correlation of mechanical and structural changes in tissues with the polarization of luminescence.

Methods. In the experiments, rabbit eyes were used. The eyeball was fixed in a special holder, equipped with a system for setting and maintaining intraocular pressure. The photoluminescence spectra of the eyes were recorded with the help of the Jobin-Yvon Flurolog-3 spectrophotometer under excitation by linearly polarized radiation of a He-Cd laser with a wavelength of 325 nm. At the entrance to the spectrophotometer, Glan's prism was installed. A laser scanning microscope LSM-710-NLO (Carl Zeiss, Germany) was used to study the collagen matrix of the eye cornea. For the analysis of optical images, a one-dimensional wavelet analysis was used, a mathematical apparatus used to process signals of various nature and structures.

Results. Luminescence of the eye cornea, excited on the eyeball by linearly polarized radiation, is partially polarized, and the integrated intensity of the luminescence spectrum depends on the intraocular pressure. The degree of polarization of the luminescence is spectrally dependent, it can have a linear or parabolic form with a minimum near the maximum of the luminescence spectrum. The form of the spectrum of the degree of polarization depends on the position of the stimulating ray on the cornea of the eye, which may be due to parasitic luminescence of other eye tissues, such as the iris, vitreous, lens. The spectrum of the degree of polarization is sensitive to intraocular pressure. Any significant change in the structure of the collagen matrix of the cornea with intraocular pressure changes by visual examination with laser scanning microscopy could not be detected. One-dimensional wavelet analysis for the analysis of optical images makes it possible to reveal spectra of inhomogeneities in optical structures with an increase in intraocular pressure to 23, 45 and 76 mm Hg.

Conclusion. Luminescence of the eye cornea, excited on the eyeball by linearly polarized radiation, is partially polarized, and the integrated intensity of the luminescence spectrum depends on the intraocular pressure. With the help of laser scanning microscopy any significant changes in the structure of the collagen matrix of the cornea with the change in intraocular pressure could not be detected. One-dimensional wavelet analysis of optical images makes it possible to reveal spectra of inhomogeneities in optical structures with an increase in intraocular pressure to 23, 45 and 76 mm Hg.

Key words

cornea, sclera, eye fibrous tunic, luminescence, polarization, elasto-optic effect, collagen, laser scanning microscopy, wavelet analysis

References

1. Avetisov, S. E., V. R. Mamikonyan, N. N. Zavalishin, and A. K. Nenyukov. «Eksperimental'noe issledovanie mekhanicheskih harakteristik rogovicy i prilegayushchih uchastkov sklery [Experimental study of the mechanical characteristics of the cornea and adjacent areas of the sclera].» Oftal'mologicheskij zhurnal, no. 4 (1988): 233-37.

2. Avetisov, S. E., V. R. Mamikonyan, E. E. Kazaryan, and O. A. Shmeleva-Demir. « Rezul'taty klinicheskoj ocenki novogo skriningovogo metoda opredeleniya individual'noj normy vnutriglaznogo davleniya [Results of clinical evaluation of a new screening method for determining the individual norm of intraocular pressure].» Vestnik oftal'mologii. 126, no. 2 (2010): 5-7.

3. Avetisov, S. E., G. S. Polunin, N. L. Sheremet, and K. O. Muranov. «Poisk shaperonopodobnyh antikataraktal'nyh preparatov – antiagregantov kristallinov hrustalika glaza. Soobshchenie 3. Vozmozhnosti dinamicheskogo nablyudeniya za processami kataraktogeneza na »prolongirovannoj« modeli uf-inducirovannoj katarakty u krys [Search for chaperon-like anticataract drugs, the antiaggregants of lens crystalline. Report 3. Possibilities of dynamic observation of cataractogenesis processes on the »prolonged« model of UV-induced cataract in rats].» Vestnik oftal'mologii. 124, no. 2 (2008): 3-7.

4. Arutyunyan, L. L., V. P. Erichev, O. M. Filippova, and A. I. Akopyan. «Vyazkoehlasticheskie svojstva rogovicy pri pervichnoj otkrytougol'noj glaukome [Viscoelastic properties of the cornea in primary open-angle glaucoma].» Glaukoma, no. 1 (2007): 62-65.

5. Vladimirov, Yu A. Fotohimiya i lyuminescenciya belkov. [Photochemistry and luminescence of proteins]. Moskva: Nauka, 1965.

6. Eremina, M. V., V. P. Yerichev, and L. V. Yakubova. «Vliyanie central'noj tolshchiny rogovicy na uroven' vnutriglaznogo davleniya v norme i pri glaukome [Effect of the central thickness of the cornea on the level of intraocular pressure in normal eye and with glaucoma].» Glaukoma, no. 4 (2006): 78-83.

7. Semchishen, A. V., and V. A. Semchishen. «Izmereniya fotouprugosti rogovicy glaza. Astigmatizm i anomalii vnutrennih napryazhenij rogovicy [Measurements of the photoelasticity of the cornea of the eye. Astigmatism and abnormalities of internal corneal stresses].» Al'manah klinicheskoj mediciny. 17, no. 2 (2008): 128-32.

8. Bubnova, I. A., V. A. Semchishen, A. P. Sviridov, E. V. Hajdukov, I. A. Novikov, S. Yu Petrov, N. A. Pahomova, and A. V. Volzhanin. «Spektral'no-polyarizacionnye svojstva fotolyuminescencii fibroznyh obolochek glaza [Spectral-polarization properties of photoluminescence of fibrous membranes of the eye].» Medicina., no. 3 (2016): 190-200. http://www.fsmj.ru/015255.html.

9. Avetisov, S. E., I. A. Bubnova, I. A. Novikov, and A. A. Antonov. «Experimental study on the mechanical strain of corneal collagen.» Journal of biomechanics 46, no. 10 (2013): 1648-654.

10. Duan, L., M. Yamanari, and Y. Yasuno. «Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography .» Optics express 20, no. 3 (2012): 3353-366.

11. Nagase, S., M. Yamanari, R. Tanaka, and T. Yasui. «Anisotropic alteration of scleral birefringence to uniaxial mechanical strain.» PloS one 8, no. 3 (2013): E58716.

12. Roth, S., and I. Freund. «Optical second-harmonic scattering in rat-tail tendon .» Biopolymers 20, no. 6 (1981): 1271-290.

13. Tan, H. Y., S. W. Teng, W. Lo, and W. C. Lin. «Characterizing the thermally induced structural changes to intact porcine eye, part 1: second harmonic generation imaging of cornea stroma.» Journal of biomedical optics 10, no. 5 (2005): 054019.

14. Yamanari, M., S. Nagase, S. Fukuda, and K. Ishii. «Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo.» Biomedical optics expres 5, no. 5 (2014): 1391-402.