Authors
Tereshhenko A. V.
Doctor of Medicine, Director1
Dolgov Ju. V.
Head, Department of information technology1
Rumjancev D. S.
Leading programmer, Department of information technology1
Sajdumarov K. V.
Programmer of the first category, Department of information technology1
1 - Kaluga branch of «IRTC ”Eye Microsurgery” named after academician S. N. Fedorov» of the Ministry of Health of Russia
Abstract
The progress of medicine and ophthalmology, in particular, are largely determined by the research intensity and technological processes of diagnosis and treatment. Modern ophthalmological clinic can be fully operational and develop only applying the latest IT-technologies. At the present stage, all surgical and diagnostic equipment can exchange digital information, systematize it and organize in a database; all operations and manipulations require strict health and economic accounting, control and analysis. In 1988, Kaluga branch of «IRTC ”Eye Microsurgery”» was created as an ophthalmic medical complex, where wide use of computer technology was originally planned. A distinctive feature is the unification of economic and medical subsystems into a single information space, full availability of all necessary information from any workstation. The opening of the clinic branches in the regions, introduction of mobile structures required the creation of a distributed interregional system. Currently, medical information system of the clinic is an integral part and instrument of the therapeutic process, scientific and economic activities, and the operational part of the data on more than 330000 patients exceeds 7 GB. Information system of Kaluga branch of «IRTC ”Eye Microsurgery”» allows to automate most optimal and cost-effective the vast majority of the challenges facing the ophthalmologic clinic.
Key words
medical information system, ophthalmic clinic, database management system Oracle
References
1. Belikov T.P., Lapshin V.V, «Systems for archivation and transmission of medical images (PACS).» Medicinskaya radiologiya i radiacionnaya bezopasnost' 2 (1994): 66-72.
2. Gusev A.V. Romanov F.A. Dudanov I.P., Voronin A.V, Medical information systems. Petrozavodsk: PetrGU, 2005. Print.
3. Ermakov D.E, «Means of structured data representation in medical informatics.» Informacionnye tekhnologii v zdravoohranenii 3-4 (2003): 30-32.
4. Nazarenko G. I., Guliev Ya. I., Ermakov D. E. Medical Information Systems: Theory and Practice (Nazarenko G. I., Osipov G. S, editors). Moscow: Fizmatlit, 2005. Print.
5. Boos J. Meineke A. Rubbert C. et al. «Cloud-Based CT Dose Monitoring using the DICOM-Structured Report: Fully Automated Analysis in Regard to National Diagnostic Reference Levels.» Rofo 3 (2016): 288-294.
6. Chambers H. «The Delphi consensus technique: oracle of gait analysis.» Dev Med Child Neurol. 3 (2016): 228.
7. Gumi S. «Electronic patient record: the competition begins.» Rev Med Suisse 11 (2015): 998.
8. Haak D. Page C. Reinartz S. et al. «DICOM for Clinical Research: PACS-Integrated Electronic Data Capture in Multi-Center Trials.» J Digit Imaging 5 (2015): 558-566.
9. Poulymenopoulou M. Papakonstantinou D. Malamateniou F. et al. «A conceptual security framework for personal health records (PHRs).» Stud Health Technol Inform. Vol. 190 (2013): 129-131.
10. Robinson J. «Beyond the DICOM header: additional issues in deidentification.» AJR Am J Roentgenol. 6 (2014): 658-664.
11. Schneider H. «Electronic patient record as the tool for better patient safety.» Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 1 (2015): 61-66.