AboutContactsEditorial StaffEditorial CouncilArchiveFor AuthorsFor Reviewers

Digital Literacy in Addiction Patients: Factors Influencing the Use of Computers and Laptops

Journal «MEDICINA» 1, 2024, pp.11-36 (Research)

Authors

Tetenova E. J.
MD, PhD, Leading Researcher1; Assistant Professor2
ORCID 0000-0002-9390-621X

Nadezhdin A. V.
MD, PhD, Leading Researcher1; Assistant Professor2
ORCID 0000-0003-3368-3170

Kolgashkin A. J.
Senior Researcher1
ORCID 0000-0002-5592-4521

Fyodorov M. V.
Junior Researcher1

Kucherov Yu. N.
PhD, Researcher1

Bulatnikov A. N.
MD, PhD, Leading Researcher1; Assistant Professor2

Ivanova M. Yu.
Addiction Doctor1

Shadrina Yu. A.
Addiction Doctor1

Pakhomov S. R.
MD, Department Head1

Anisimova A. N.
Addiction Doctor1

Kovtun O. N.
Psychologist1

Shinina L. V.
Addiction Doctor1

Sokolova E. V.
Addiction Doctor1

Shailina I. M.
Addiction Doctor1

Nikitich Yu. V.
Department Head1

1 - Moscow Research and Practical Centre on Addictions, Moscow, Russian Federation
2 - Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation

Corresponding Author

Tetenova Elena; e-mail: tej08@inbox.ru

Conflict of interest

Authors have no conflict of interest.

Funding

The study had no sponsorship.

Abstract

Background. Studying the user experience of eventual target groups for digital services is important both for assessing the feasibility of using information and communication technologies in the case and for involving patients in the activities of therapeutic groups and communities in social media. Study aim. To study the influence of socio-demographic characteristics of patients undergoing inpatient treatment in a drug treatment facility on their use of personal computers/laptops. Materials and methods. Cross-sectional study using a specially designed questionnaire of a non-deterministic sample of addiction patients (n = 1168) hospitalized at the Moscow Scientific and Practical Center for Addictions. Statistical analysis was conducted in IBM SPSS 25.0. Study results. Statistically significant differences were noted in the use of personal computers and laptops depending on the age, level of education and economic activity of respondents. Conclusions. Predictors of active use of computers and laptops by patients are: young age; employment; higher education. The results of the study can be used to target addiction clinic patients according to socio-demographic parameters in order to implement telemedicine approaches in the process of their outpatient support.

Key words

addiction clinic, patient, information and communication technologies, socio-demographic characteristics, personal computer, laptop

DOI

References

1. Muench F. The Promises and Pitfalls of Digital Technology in Its Application to Alcohol Treatment. Alcohol Res 2014; 36(1): 131-142.

2. Tennant ., Stellefson M., Dodd V., Chaney B., Chaney D., Paige S., Alber J. eHealth Literacy and Web 2.0 Health Information Seeking. J Med Internet Res 2015; 17(3): e70, doi: 10.2196/jmir.3992

3. Molfenter T., Boyle M., Holloway D., Zwick J. Trends in telemedicine use in addiction treatment. Addict Sci Clin Pract 2015: 10: 14, doi: 10.1186/s13722-015-0035-4

4. Kolgashkin A.J., Fedorov M.V., Tetenova E.J., Nadezhdin A.V., Koshkina E.A., Kucherov Yu.N., Nadezhdin S.A., Koshkin E.A., Krickij A.V., Dobroskokin L.G., Bedina I.A., Buzik O.Zh., Koporov S.G., Bryun E.A. Tekushchaya deyatel'nost' i perspektivy razvitiya internet-resursa medicinskoj organizacii na primere sajta GBUZ «MNPC narkologii DZM» [Current activities and prospects for the development of the Internet resource of a medical organization. Example of the web-site of the Moscow Scientific and Practical Center for Addictions.] Medicina 2021; 9(2): 18-33, doi; 10.29234/2308-9113-2021-9-2-18-33 (In Russ.)

5. Roberts A.E., Davenport T.A., Wong T., Moon H.-W., Hickie I.B., LaMonica H.M. Evaluating the quality and safety of health-related apps and e-tools: Adapting the Mobile App Rating Scale and developing a quality assurance protocol. Internet Interv. 2021: 24: 100379, doi: 10.1016/j.invent.2021.100379

6. Gel'man V.Ya. Puti razvitiya apparatury i metodov issledovanij dlya funkcional'noj diagnostiki. [Ways of Development of Equipment and Research Methods for Functional Diagnostics.] Medicina 2022; 10(3): 42-52, doi: 10.29234/2308-9113-2022-10-3-42-52 (In Russ.)

7. Gel'man V.Ya. Izmenenie roli pacienta v lechebnom processe s razvitiem domashnej telemediciny. [Changing the Role of the Patient in the Treatment Process With the Development of Home Telemedicine.] Medicina 2022; 10(1): 41-49, doi: 10.29234/2308-9113-2022-10-1-41-49 (In Russ.)

8. Yun S., Enjuanes C., Calero-Molina E., Hidalgo E., José-Bazán N., Ruiz M., Verdú-Rotellar J.M., Garcimartín P., Jiménez-Marrero S., Garay A, Ras M., Ramos R., Pons-Riverola A., Moliner P., Corbella X., Comín-Colet J. Usefulness of telemedicine-based heart failure monitoring according to 'eHealth literacy' domains: Insights from the iCOR randomized controlled trial. Eur J Intern Med 2022;101: 56-67, doi: 10.1016/j.ejim.2022.04.008

9. Schaeffer D., Gille S., Berens E.-M., Griese L., Klinger J., Vogt D., Hurrelmann K. Digital Health Literacy of the Population in Germany: Results of the HLS-GER 2. Gesundheitswesen 2023; 85(4): 323-331, doi: 10.1055/a-1670-7636

10. Tetenova E.J., Nadezhdin A.V., Kolgashkin A.J., Fedorov M.V., Bedina I.A., Koshkin E.A., Nadezhdin S.A., Koshkina E.A., Novikov E.M., Koporov S.G., Bryun E.A. K voprosu o gendernyh razlichiyah v ispol'zovanii smartfonov vrachami narkologicheskoj kliniki. [On the issue of gender differences in the use of smartphones by doctors of an addiction treatment clinic.] . Psihicheskoe zdorov'e [Mental Health] 2020; (12): 25-36. (In Russ.)

11. Tetenova E.J., Nadezhdin A.V., Kolgashkin A.J., Fedorov M.V., Bedina I.A., Koshkin E.A., Zolotukhin S.V., Klyachin A.I., Shipitsin V.V., Sokoltchik Y.I., Koshkina E.A., Koporov S.G., Bryun E.A. Smartphone Medical Apps Use by Health Professionals: Is Gender a Confounding Factor? Global Journal of Health Science 2022; 14(3): 87-99, doi: 10.5539/gjhs.v14n3p87

12. Tetenova E.J., Nadezhdin A.V., Kolgashkin A.J., Fedorov M.V., Bedina I.A., Koshkin E.A., Zolotuhin S.V., Klyachin A.I., Shipicyn V.V., Sokol'chik E.I., Koshkina E.A., Koporov S.G., Bryun E.A. Gotovy li vrachi narkologicheskih klinik k ispol'zovaniyu sistem podderzhki prinyatiya klinicheskih reshenij, realizovannyh na mobil'nyh platformah? [Are addiction doctors ready to use mobile clinical decision support systems?] Narkologiya [Narcology] 2019; 18(12): 45-64. (In Russ.)

13. Prikaz Ministerstva cifrovogo razvitiya, svyazi i massovyh kommunikacij Rossijskoj Federacii ot 18.11.2020 goda 600 «Ob utverzhdenii metodik rascheta celevyh pokazatelej nacional'noj celi razvitiya Rossijskoj Federacii »Cifrovaya transformaciya«» [Order of the Ministry of Digital Development, Communications and Mass Media of the Russian Federation dated November 18, 2020 No. 600 «On approval of methods for calculating target indicators of the national development goal of the Russian Federation »Digital Transformation«»] Available at: https://www.consultant.ru/document/cons­_doc­_LAW­_372437/ Assessed: 11.07.2023. (In Russ.)

14. Norman C.D., Skinner H.A. eHEALS: The eHealth Literacy Scale. J Med Internet Res. 2006; 8(4): e27, doi: 10.2196/jmir.8.4.e27

15. Crocker B., Feng O., Lindsay R Duncan L.R. Performance-Based Measurement of eHealth Literacy: Systematic Scoping Review. J Med Internet Res 2023; 25: e44602, doi: 10.2196/44602

16. Colder Carras M., Mojtabai R., Furr-Holden C.D.M., Eaton W., Cullen B.A.M. Use of mobile phones, computers and internet among clients of an inner-city community psychiatric clinic. Journal of Psychiatric Practice 2014; 20(2): 94-103, doi: 10.1097/01.pra.0000445244.08307.84

17. Ashford R.D., Lynch K., Curtis B. Technology and Social Media Use Among Patients Enrolled in Outpatient Addiction Treatment Programs: Cross-Sectional Survey Study. J Med Internet Res. 2018; 20(3): e84, doi: 10.2196/jmir.9172

18. Nadezhdin A.V. Sistema informacionno-tekhnicheskoj podderzhki klinicheskogo nauchnogo issledovaniya. [IT-Support System for Clinical Research.] Narkologiya [Narcology] 2018; (8): 33-39. (In Russ.)

19. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 1995; 57(1): 289-300, doi: 10.1111/j.2517-6161.1995.tb02031.x

20. Varaksin A.N., Shalaumova Yu.V., Panov V.G. Principy kontrolya konfaunderov v sravnitel'nyh issledovaniyah v ekologii: standartizaciya i regressionnye modeli. [Principles for controlling confounders in comparative studies in ecology: standardization and regression models.] Principy ekologii [Principles of ecology] 2014; (1): 4-14. (In Russ.)

21. Bogdanov M.B., Lebedev D.V. Pol'zovanie set'yu Internet v Rossii v 2003-2015 gg. Vestnik Rossijskogo monitoringa ekonomicheskogo polozheniya i zdorov'ya naseleniya NIU VSHE (RLMS-HSE). Sb. nauch. tr. [Internet use in Russia in 2003-2015. Bulletin of the Russian Monitoring of the Economic Situation and Health of the Population of the National Research University Higher School of Economics (RLMS-HSE). Collected scientific works.] oscow: 2017. P. 129-145. (In Russ.)

22. Imhof M., Vollmeyer R., Beierlein C. Computer use and the gender gap: The issue of access, use, motivation, and performance. Computers in Human Behavior 2007; 23(6): 2823-2837, doi: j.chb.2006.05.007

23. Gazibara T., Kurtagic I., Kisic-Tepavcevic D., Nurkovic S., Kovacevic N., Gazibara T., Pekmezovic T. Computer and online health information literacy among Belgrade citizens aged 66-89 years. Health Promot Int 2016; 31(2): 335-343, doi: 10.1093/heapro/dau106

24. Andone I., Błaszkiewicz K., Eibes M., Trendafilov B., Montag C., Markowetz A. How Age and Gender Affect Smartphone Usage. UbiComp '16: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2016: 9-12, doi; 10.1145/2968219.2971451

25. Koshkina E.A.., Kolgashkin A.J., Tetenova E.J., Nadezhdin S.A. Mobil'nye prilozheniya dlya bol'nyh tabachnoj zavisimost'yu. [Mobile Apps for Tobacco Addicts.] Narkologiya [Narcology] 2016; (7): 3-14. (In Russ.)

26. Bryun E.A., Koshkina E.A., Tetenova E.J., Nadezhdin A.V., Sokol'chik E.I., Kolgashkin A.J. Mobil'nye prilozheniya dlya bol'nyh narkoticheskoj zavisimost'yu. [Mobile Apps for Drug Addicts.] Narkologiya [Narcology] 2017; (2): 24-37. Russ.)

27. Bryun E.A., Koshkina E.A., Sokol'chik E.I., Tetenova E.J., Kolgashkin A.J., Nadezhdin S.A. Mobil'nye prilozheniya dlya lic, stradayushchih zavisimostyami, kak element sistemy elektronnogo zdravoohraneniya. [Mobile Applications for Addicts as Part of the E-Health System.] Narkologiya [Narcology] 2017; (7): 76-84. (In Russ.)

28. Pérez-Escolar, M., Canet, F. Research on vulnerable people and digital inclusion: toward a consolidated taxonomical framework. Univ Access Inf Soc 2023; 22: 1059-1072, doi: 10.1007/s10209-022-00867-x

29. Galyapina V.E. Mezhpokolennaya transmissiya cennostej v sem'e i psihologicheskoe blagopoluchie podrostkov: kross-kul'turnyj analiz. [Intergenerational transmission of values in the family and the psychological well-being of adolescents: a cross-cultural analysis.] Diss. na soiskanie uchenoj stepeni d.psih.n. [Doctor of Psychology Thesis] oscow, 2022. 540 p. (In Russ.)

30. Mareeva S.V., Tihonova N.E. Bednost' i social'nye neravenstva v Rossii v obshchestvennom soznanii. [Poverty and social inequalities in Russia in the public consciousness.] Mir Rossii [World of Russia] 2016; 25(2): 37-67. (In Russ.)

31. Dyatlov A.V. Innovacionnye gruppy naseleniya: v poiskah societal'nosti. [Innovative population groups: in search of societality.] Obshchestvo: politika, ekonomika, parvo [Society: politics, economics, law] 2007; (2): 50-66. (In Russ.)

32. Nazarbaeva E.A. Vospriyatie fenomena bednosti naseleniem: kogo i pochemu rossiyane schitayut bednym? [Perception of the phenomenon of poverty by the population: who and why do Russians consider poor?] Monitoring obshchestvennogo mneniya: ekonomicheskie i social'nye peremeny [Monitoring public opinion: economic and social changes] 2023; (4): 30-53, doi: 10.14515/monitoring.2023.4.2398 Russ.)

33. Elga A. On Overrating Oneself... and Knowing It. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition 2005; 123(1/2): 115-124, doi: 10.1007/s11098-004-5222-1

34. Ballard C.L., Gupta S. Perceptions and realities of average tax rates in the federal income tax. Evidence from Michigan. National Tax Journal 2018; 71(2): 263-294, doi: 10.17310/ntj.2018.2.03

35. Conner K.R., Pinquart M., Gamble S.A. Meta-analysis of depression and substance use among individuals with alcohol use disorders. J Subst Abuse Treat 2009; 37(2):127-137, doi: 10.1016/j.jsat.2008.11.007

36. Swendsen J.D., Merikangas K.R. The comorbidity of depression and substance use disorders. Clin Psychol Rev 2000; 20(2): 173-189, doi: 10.1016/s0272-7358(99)00026-4

37. Calarco C.A., Lobo M.K. Depression and substance use disorders: Clinical comorbidity and shared neurobiology. Int Rev Neurobiol 2021; 157 :245-309, doi: 10.1016/bs.irn.2020.09.004

38. Tetenova E.J. Tendencii i opyt vnedreniya elektronnogo zdravoohraneniya. Opredelenie perspektiv ego razvitiya v psihiatrii-narkologii. [Trends and Experiences in e-Health Introduction. Prospectives for Addiction Medicine.] Medicine 2017; (1): 44-55. (In Russ.)