

Влияние ортокератологических контактных линз на анатомо-функциональное состояние роговицы

Абсатарова H. A.1

аспирант ORCID 0000-0002-3766-7517

Усенко В. А.¹

к.м.н, доцент ORCID 0000-0001-7533-7773

Юнусов М. А.²

врач-офтальмолог, микрохирург ORCID 0009-0003-1852-1592

- 1 Кыргызский государственный медицинский институт переподготовки и повышения квалификации им. С. Б. Даниярова, г. Бишкек, Кыргызская Республика
- 2 Медицинский центр «Medcenter KG» г. Бишкек, Кыргызская Республика

Автор для корреспонденции: Абсатарова Нурзида Абдыкайымовна; **e-mail:** nurzid82@mail.ru **Финансирование.** Исследование не имело спонсорской поддержки. **Конфликт интересов.** Авторы заявляют об отсутствии конфликта интересов.

Цель. Провести анализ потенциального влияния ортокератологических линз при коррекции миопии на анатомо-функциональное состояние роговицы. Обследовано 160 глаз (80 пациентов): с миопией слабой степени – 60 глаз (30 пациентов), средней степени – 100 глаз (50 пациентов), средний возраст 12,0 ± 0,38 лет. Контрольная группа – 40 глаз (20 пациентов), с эмметропией, средний возраст – 13,0 ±0,45 лет. Всем больным применялись ортокератологические линзы обратной геометрии «Moonlens» фирмы «Sky Optix» в ночном режиме. Методы исследования. Проведены специальные методы исследования: кератотопография, ОКТ переднего сегмента глаза, авторефрактометрия, офтальмометрия, биометрия, скиаскопия на фоне циклоплегии, УЗИ глаза, биомикроскопия, офтальмоскопия. Результаты. Выявлено после применения ортокератологических линз уплощение роговицы от центра к периферии с формированием отрицательного значения индекса асферичности «Q» – равно (-) 0,57±0,054 (р <0,01); увеличение преломления в средней и периферической зонах роговицы с повышением индекса асимметричности «I-S» – равно 3,0±0,12D (р <0,01). По меридианам SimK1 и SimK2 выявлена степень ослабления преломления в центре роговицы (-)2,32±0,19D и степень усиления преломления роговицы в средней и периферической зонах – (+) 61±0,53D и (+) 0,97 0,11D. Заключение. Таким образом, выявленные изменения анатомофункционального состояния роговицы при лечении миопии ортокератологическими линзами в ночном режиме свидетельствуют о трансформации индуцированного миопического дефокуса.

Ключевые слова: миопия, роговица, радиус кривизны роговицы, преломляющая сила роговицы

doi: 10.29234/2308-9113-2024-12-3-130-140

Для цитирования: Абсатарова Н. А., Усенко В. А., Юнусов М. А. Влияние ортокератологических контактных линз на анатомо-функциональное состояние роговицы. *Медицина* 2024; 12(3): 130-140

Актуальность

В настоящее время общепризнано, что в основе прогрессирования миопии лежат элементы дефокуса лучей света относительно сетчатки и растяжения ПЗО глаз [1]. В соответствии с этим, в основе профилактики близорукости имеет место два направления — устранение

периферического дефокуса вследствие корригируемых линз и лечебные мероприятия, способствующие укреплению склеры. В последние десятилетия широкое распространение среди контактной коррекции получили ортокератологические линзы в ночном режиме. [1-3].

При применении контактных ортокератологических линз принцип устранения ретинального дефокуса связан с изменением топографии кривизны передней поверхности в центральной зоне роговицы. Степень изменения кривизны роговицы зависит от геометрии задней поверхности линзы. При этом, вследствие изменения топографии передней поверхности роговицы, формируется периферический миопический дефокус [4-7]. В соответствии с этим представляют интерес особенности изменения роговицы после применения ортокератологических линз — ее формы, толщины, преломляющей способности, радиуса кривизны в оптической и периферической зонах.

Многочисленными научными исследованиями выявлено, что торможение прогрессирования близорукости обусловлено индуцированным периферическим миопическим дефокусом, образованным воздействием ортокератологических линз на роговицу в ночном режиме [8,9]. По данным литературы, на фоне применения ортокератологических линз выявлены достоверные изменения топографии и толщины в центральной и среднепериферической зонах роговицы, более выраженные по сравнению с коррекцией жесткими контактными линзами (ЖКЛ) [10].

Поверхность роговицы является одной из основных преломляющих структур оптической системы глаза. Незначительное изменение ее кривизны становится причиной понижения остроты зрения. В соответствии с этим, одним из необходимых методов исследования является кератотопография, которая отражает состояние передней поверхности роговицы и играет важную роль в диагностике неправильного роговичного астигматизма. Кератотопография дает количественную характеристику неправильного астигматизма. Изменчивость показателей кератотопографии передней поверхности роговицы приводит к расстройству преломления лучей, ухудшению коррекции аномалии рефракции и понижению остроты зрения [11-13]. Наряду с этим, в оценке состояния роговицы имеют большое значение такие современные методы исследования, как оптическая когерентная томограмма переднего сегмента проведение офтальморефрактометрии, глаза, пахиметрии [14-17]. В соответствии этим поставлена цель исследования: провести анализ потенциального влияния ортокератологических линз при коррекции миопии на анатомофункциональное состояние роговицы.

Материал и методы исследования

Обследованию подлежало 160 глаз (80 пациентов) — с миопией слабой степени — 60 глаз (30 пациентов), средней степени — 100 глаз (50 пациентов). Средний возраст 12,0±0,38 лет. Контрольная группа — 40 глаз (20 пациентов) с эмметропией, средний возраст 13,0±0,45лет. Сферический эквивалент рефракции при миопии слабой степени (-) 1,5±0,25D, средней

степени (-) 4,7±0,22D. Передне-задняя ось глаза в среднем при близорукости слабой степени –24,42±0,28мм, при средней степени –25,65±0,27 мм; с наличием роговичного астигматизма при близорукости слабой степени –0,75±0,22; при средней степени –0,92±0,54.

Толщина роговицы в центральной зоне у пациентов слабой степени миопии до лечения составляла $522,6\pm0,9$ мкм, средней степени $523\pm0,9$ мкм, после лечения соответственно - $510\pm0,83$ мкм и $505\pm0,82$ мкм (p<0,05). Толщина эпителия роговицы в центральной зоне при миопии слабой степени до лечения составляла $-44,6\pm0,6$ мкм, средней степени $-47,0\pm0,63$ мкм, против $-39,3\pm0,55$ мкм и $33,5\pm0,54$ мкм после лечения (p<0,05; p<0,01) (табл. 1).

Таблица 1. Анатомо-структурные показатели роговицы до и после лечения миопии ортокератологическими линзами.

Анатомо- структурные	Миопия слабой степени (60 глаз)			едней степени О глаз)		
показатели роговицы в мкм	До лечения	После лечения	До лечения	После лечения	КГ (40 глаз)	
Толщина роговицы	522,6±0,9	510±0,83	523±0,9	505±0,82	520 мкм ±0,8 мкм	
в центральной зоне в мкм		Δ		Δ		
Толщина роговицы в периферической зоне в мкм	636±0,63	646±0,65	599±0,99	624±0,9	660±0,72 мкм	
Толщина эпителия роговицы в	44,6±0,6	Δ 39,3±0,55	47±0,63	ΔΔ 33,5±0,54	50,0±0,65 мкм	
центральной зоне в		Δ		ΔΔ		
Толщина эпителия	50,1±0,65	63,8±0,61	51,5±0,64	58,0±0,62		
роговицы в периферической зоне в мкм		Δ		ΔΔ		

P <0,05 Δ ; P <0,01 Δ Δ

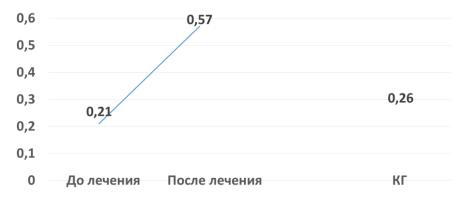
По распределению флюоресцеина в подлинзовом пространстве: при миопии слабой степени — плоская посадка — 25 глаз (12 пациентов), нормальная посадка — 35 глаз (18 пациентов). При миопии средней степени — крутая посадка — 34 глаз (17 пациентов), 66 глаз (33 пациента) с нормальной посадкой. Определялась сила преломления в двух меридианах SimK1 в вертикальном меридиане, SimK2 в горизонтальном меридиане, в трех зонах: центральной — 1-3мм, среднепериферической — 3-5 мм, периферической — 5-7 мм.

Bcem больным применялись ортокератологические линзы обратной геометрии «Moonlens» фирмы «Sky Optix» в течении всего периода в ночном режиме.

Оценка состояния роговицы на фоне применения ортокератологических линз проводилась на основе специальных методов исследования: кератотопографии (Корнеотопографическая система SW-600), оптической когерентной топографии переднего сегмента глаза (Carl Zeiss Cirrus НД ОСТ Model 4000 | 5000, Germany), авторефрактометрии (Grand Seiko YR-210 0), офтальмометрии (Topcon KR-7309), биометрии (Zeiss IOLMaster 500), скиаскопии на фоне циклоплегии, биомикроскопии (щелевая лампа L-0 240). Наряду с этим проводились офтальмоскопия (бинокулярная Schepens, линза VOLK-90Д). Исследования проводились до и после применения ортокератологических линз через 1-3-6-12-24 месяцев. Статистический анализ результатов исследования проводился согласно общепринятым методикам с помощью программных средств Microsoft Office 2010 для операционных систем Windows XR и программы Statistica. Данные представлены средней арифметической и ее стандартным отклонениям (M ±m). За достоверный показатель принималась разница величин Р <0,05.

Обсуждение результатов исследования

Изменения толщины роговицы у пациентов с близорукостью слабой и средней степени при применении ортокератологических линз в ночном режиме сопровождались увеличением радиуса кривизны роговицы в центральной оптической зоне с уменьшением его в среднепериферической с соответствующими изменениями преломляющей силы.

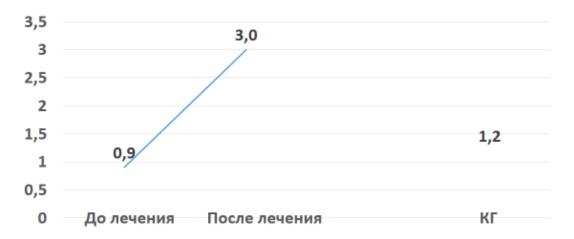

Таблица 2. Параметры оптических показателей роговицы до и после лечения миопии ортокератологическими линзами.

Оптические показатели	Миопия слабой степени (60 глаз)		Миопия средней	INT (40		
роговицы	До лечения	После лечения	До лечения	После лечения	КГ (40 глаз)	
Сферический эквивалент рефракции в D	$-1,5 \pm 0,25$	$\begin{array}{c} \textbf{-0,46} \pm \textbf{0,15} \\ \Delta \end{array}$	- 4,7 ± 0,22	$\begin{array}{c} \textbf{-1,0} \pm \textbf{0,12} \\ \Delta \ \Delta \end{array}$		
Радиус кривизны роговицы при взгляде прямо в мм Т	8,14±0,52 7,92±0,42	8,45±0,49 8,02±0,52	7,97±0,51 8,38±0,49	8,71±0,47 8,13±0,52	7,6±0,54	
N	7,93±0,42	7,76±0,54	8,34±0,49	8,16±0,52		
Индекс асферичности коэффицента "Q"	-0.21 ± 0.03	-0.56 ± 0.055 $\Delta \Delta$	$+0,39 \pm 0,053$	$-0,57 \pm 0,054$ $\Delta \Delta$	-0.26 ± 0.03	
Оптическая сила в центральной зоне роговицы в D	41,70±0,58	39,68±0,62 ∆	41,90±0,58	38,74±0,60 Δ	43,0±0,52	
Среднепериферическая зона Т	40,70±0,58	42,15±0,58 Δ	40,35±0,55	41,96±0,58 Δ	39,0±0,60	
Среднепериферическая зона N	40,47±0,61	42,46±0,54 ∆	40,48±0,62	42,47±0,58 Δ		
Индекс асимметричности коэффицента "I - S"	$0,23 \pm 0,03$	$2,78 \pm 0,18$ $\Delta \Delta \Delta$	$1,55 \pm 0,19$	$3,22 \pm 0,12$ $\Delta \Delta$	$> 1,2D \pm 0,18$	

 $P < 0.05 \Delta$; $P < 0.01 \Delta \Delta$; $P < 0.001 \Delta \Delta \Delta$

Как видно из табл. 2 радиус кривизны роговицы при миопии слабой и средней степени до лечения в центральной зоне составлял соответственно – 8,14±0,52 мм и 7,97±0,51 мм, после лечения – 8,45±0,49 мм, и 8,71±0,47 мм, с обратной тенденцией в среднепериферической зоне – до лечения 7,92±0,42мм и 8,38±0,49 мм, после лечения 8,02±0,52мм и 8,13±0,52мм.

Рис. 1. Показатель кератотопографии роговицы коэффициента «Q» до и после лечения миопии ортокератологическими линзами.



На степень изменения кривизны роговицы указывает индекс асферичности «Q». Как видно из табл. 2 и рис. 1, коэффициент Q имеет отрицательное значение, что характеризует вытянутую, плоскую поверхность роговицы от центра к среднепериферической зоне после применения ортокератологических линз при миопии. Так, если до лечения разность кривизны роговицы между центральной и среднепериферической зоной при миопии слабой и средней степени составляла (-) 0.21 ± 0.03 мм и (+) 0.39 ± 0.053 мм, то после лечения -0.56 ± 0.055 мм и (-) 0.57 ± 0.054 мм, в КГ - (-) 0.26 ± 0.03 мм р <0.001, р <0.001). В норме роговица должна быть более плоской к периферии.

В соответствии с изменением радиуса кривизны роговицы имеет место уменьшение силы преломления в центральной зоне и усиление в среднепериферической. Как видно из табл. 2 при близорукости слабой и средней степени сила преломления роговицы до лечения в центральной зоне составляла соответственно 41,70±0,58D, и 41,90±0,58D, против 39,68±0,62D, и 38,74±0,60D после лечения и в КГ – 43,0±0,52D (Р <0,05).

В среднепериферической зоне имеет место обратная тенденция: до лечения в обеих группах – 40,70±0,58D, и 40,35±0,55D, против 42,15±0,58D, и 41,96±0,57D, и КГ – 39,0±0,60D (P<0,05).

Рис. 2. Показатель кератотопографии роговицы коэфицента «I-S» до и после лечения миопии ортокератологическими линзами.

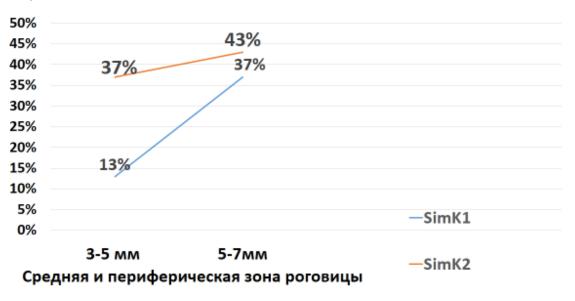
Перераспределение силы преломления роговицы от центра к среднепериферической зоне на фоне применения ортокератологических линз при миопии слабой и средней степени отражает индекс асимметричности — «I-S», Как видно из табл. 2 и рис. 2, если до лечения он составляет 0,23 \pm 0,03D и 1,55 \pm 0,19D, то после лечения — 2,78 \pm 0,18D и 3,22 \pm 0,12D, в КГ — >1,2 \pm 0,18D (P < 0,001, P < 0,01).

Таким образом, трансформация роговицы ортокератологической линзой, применяемой в ночном режиме, уменьшает преломляющую силу роговицы в центральной зоне при миопии слабой и средней степени с формированием миопического дефокуса в среднепериферической зоне, способствуя этим повышению некорригированной остроты зрения и уменьшению степени близорукости.

Наибольшей остроты зрения можно добиться только при равномерной гладкой передней поверхности роговицы. Большое значение в оценке передней поверхности роговицы имеют показатели коэффициентов кератотопографии. Основную кривизну в центральной зоне роговицы обусловливают при кератотопографии два параметра: это самый «крутой» меридиан (Sim K1) с наибольшей силой преломления и самый «плоский» (Sim K2), перпендикулярный крутому.

В основе оценки преломляющей способности по данным меридианам при лечении миопии ортокератологическими линзами в центральной зоне роговицы имеет место степень ослабления преломляющей силы, а в среднепериферической и периферической зоне — степень усиления, то есть переход гиперметропического дефокуса в миопический. Представляет интерес выявление частоты и характера изменений преломления в роговице после применения ортокератологических линз в зонах 1-3мм, 3-5мм, и 5-7мм.

Таблица 3. Характер изменения преломляющей силы роговицы по данным кератотопографии после лечения миопии ортокератологическими линзами.


	Миопия слабой степени (60 глаз)			Миопия средней степени (100 глаз)		
Показатели кератотопографии	Степень изменения преломления в D	Количество глаз	%	Степень изменения преломления в D	Количество глаз	%
Sim K1 в D						
1-3 мм	- 2,18 ± 0,18	30	50,00%	- 3,13 ± 0,12	48	48,20%
3-5 мм	$+0,34 \pm 0,05$	10	16,70%	+0,46 ± 0,057	13	13,00%
5-7 мм	+0,61 ± 0,054	23	38,30%	$+0.87 \pm 0.18$	37	37,00%
	ΔΔ			ΔΔ		
Sim K2 в D						
1-3 мм	$-2,44 \pm 0,19$	29	48,30%	$-2,91 \pm 0,13$	48	48,00%
3-5 мм	$+0,52 \pm 0,053$	16	26,20%	$+1,05 \pm 0,17$	22	22,00%
5-7 мм	$+0,99 \pm 0,12$	26	43,30%	$+1,5 \pm 0,19$	43	43,00%
	Δ			Δ		

 $P < 0.05 \Delta$; $P < 0.01 \Delta \Delta$

Как видно из табл. 3 и рис. 3 у пациентов с близорукостью слабой и средней степени в центральной зоне после лечения выявлено ослабление преломляющей способности роговицы на (-) 2,18±0,18D на 30 глазах в 50% и на (-) 3,13±0,12D на 48 глазах в 48,2% по вертикальному меридиану «SimK1».

Puc. 3. Частота усиления преломления периферии роговицы после лечения миопии ортокератологическими линзами.

По горизонтальному меридиану «Sim K2» в центре роговицы при слабой и средней степени ортокератологическими степень ослабления миопии после лечения линзами преломляющей способности составила соответственно – (-)2,44±0,19D на 29 глазах в 48,3% и (-)2,91±0,13D на 48 глазах в 48%. В среднепериферической зоне по вертикальному меридиану (SimK1) при близорукости слабой и средней степени после лечения ортокератологическими линзами выявлено увеличение преломления на (+)0,34±0,05D на 10 глазах в 16,7% и на (+)0,46± 0,057D на 13 глазах в 13%, в то время как в периферической зоне на (+)0,61± 0,054D на 23 глазах в 38,3% и на (+)0,87 ± 0,18D на 37 глазах в 37% (P<0,01). По горизонтальному меридиану среднепериферической зоны степень усиления преломляющей способности составляла соответственно (+)0,52±0,053D на 16 глазах в 26,2% и на $(+)1,05\pm0,17$ D на 22 глазах в 22%, в то время как в периферической зоне $-(+)0,99\pm0,12$ D на 26 глазах в 43,3% и (+)1,5 ±0,19D на 43 глазах в 43% (Р <0,05, Р<0,05) (табл. 3, график 3).

Таким образом, у пациентов с близорукостью слабой и средней степени после применения ортокератологических линз в ночном режиме имеет место усиление преломления в средней и периферической зонах с ослаблением в центре роговицы и формированием индуцированного миопического дефокуса.

Заключение

Применение ортокератологических линз при близорукости слабой и средней степени приводит к уплощению роговицы от центра к периферии вследствие увеличения радиуса кривизны с формированием отрицательного значения индекса асферичности «Q»

Увеличение индекса асимметричности «1-S» на фоне лечения миопии ортокератологическими линзами свидетельствует о увеличении силы преломления роговицы от центра к периферии.

Основную кривизну роговицы отражают параметры SimK1 и SimK2 по вертикальному и горизонтальному меридианам, по которым выявляется степень ослабления силы преломления в роговице в центральной зоне и степень усиления в периферической на фоне лечения миопии ортокератологическими линзами.

Авторский вклад

Абсатарова Нурзида Абдыкайымовна: проведение диагностических методов исследования, сбор материалов, проведение статистической обработки полученных результатов, оформление статьи совместно с научным руководителем.

Усенко Валентина Александровна: обоснование актуальности избранной темы, анализ полученных результатов исследования, оформление статьи.

Юнусов Малик Абдыхамидович: определение биометрии глаз в трех проекциях до и послелечения.

Литература

- 1. Mountford J.A., Ruston D., Dave T., Orthokeratology: Principles and Practice. Edinburgh; New York: Butterworth-Heinemann, 2004.
- 2. Swarbrick H.A. Orthokeratology (corneal refractive therapy): what is it and how does it work. *Eye Contact Lens* 2004: 30(4) 181-185; discussion 205-206, *doi:* 10.1097/01.icl.0000140221.41806.6e
- 3. Тарутта Е.П, Вержанская Т.Ю., Вахова Е.С. и др. Ортокератология: Основы подбора ОК-линз и ведения пациентов в специализированных офтальмологических клиниках. Методические пособие. М.: ФГБУ «НМИЦ ГБ им. Гельмгольца», ФГБОУ ВО «Российский университет медицины», 2016. 59 с.
- 4. Lee Y.C. Wang J.H. Chin C.J. Effect of Orthokeratology on Myopia Progression: Twelve-Year Results of a Retrospective Cohost Study. *BMC Ophthalmology* 2017; 17: 243, *doi:* 10.1186/s12886-017-0639-4
- 5. Ren Q., Yang B., Liu P. Orthokeratology in adults and factors affecting success: study design and preliminary results. *Contact Lens Anterior Eye* 2020, 43(6): 595-601, *doi:* 10.1016/j.clae.2020.03.016
- 6. Swarbrick H., Alharb A., Wan E., Lum E., et al. Myopia Control During Orthokeratology Lens Wear in Children Using a Novel Study Design. *Ophthalmology* 2015, 122(3); 620-630, *doi:* 10.1016/j.ophtha.2014.09.028
- 7. Аветисов С.Э., Бородина Н.В., Кобзова М.В., Мусаева Г.М. Современные подходы к оценке анатомофункционального состояния роговицы. *Вестник офтальмологии* 2010; 126(4): 59-63.

- 8. Тарутта Е.П., Вержанская Т.Ю. Возможные механизмы тормозящего влияния ортокератологических линз на прогрессирование миопии. *Российский офтальмологический журнал* 2008; 1(2): 26-30.
- 9. Ежова Е.А., Балалин С.В. Анализ морфометрических показателей роговицы у пациентов с миопией при применении ортокератологических линз. Вестник Тамбовского государственного университета. Серия: Естественные и технические науки 2016; 21(4): 1535-1540.
- 10. Аветисов С.Э., Шкаева Г.М. Бубнова Н.А. Влияние традиционных и ортокератологических жестких контактных линз на анатомо-функциональное состояние роговицы. *Вестник офтальмологии* 2023; 139(1): 7-15, *doi:* 10.17116/oftalma20231390117
- 11. Yeniad B., Yigit B., Issever H., Bilgin L. Effect of Contact Lenses on Corneal Thickness and Corneal Curvature During Usage. *Eye Contact Lens* 2003; 29(4): 223-229, *doi:* 10.1097/01icl0000086494.50288.70
- 12. Вержанская Т.Ю., Тарутта Е.П., Мамукян И.В., Толорая Р.Р. Влияние ортокератологических контактных линз на структуру переднего отрезка глаза. *Российский офтальмологический журнал* 2009; 2(2): 30-34.
- 13. Тарутта Е.П., Аляева О.О., Вержанская Т.Ю, Милаш С.В. Результаты оценки общего и роговичного астигматизма разными методами у пациентов с миопией, пользующихся ночными ортокератологическими линзами. Вестник офтальмологии 2013; 129(4): 59-65.
- 14. Smith E., Hung L., Hung J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. *Vision Research* 2009; 49(19): 2386-2392, *doi:* 10.1016/j.visres.2009.07.011
- 15. Аляева О.О. Офтальмоэргономическая оценка эффективности ортокератологической коррекции миопии. Автореф. дисс. на соискание ученой степени к.м.н. М., 2014. 25 с.
- 16. Матросова Ю.В. Клинико-функциональные показатели при ортокератологической коррекции миопии. Вестник Тамбовского государственного университета. Серия: Естественные и технические науки 2016; 21(4): 1613-1617.
- 17. Atchison D.A. Li S.-M., Li H., et al. Relative Peripheral Hyperopia Does Not Predict Development and Progression of Myopia in Children. *Invest Ophthalmol Vis Sci* 2015; 56(10): 6162-6170, doi: 10.1167/iovs.15-17200

The Influence of Orthokeratological Contact Lenses on the Anatomical and Functional State of the Cornea

Absatarova N. A.1

Postgraduate Student ORCID 0000-0002-3766-7517

Usenko V. A.¹

MD, PhD, Assistant Professor ORCID 0000-0001-7533-7773

Yunusov M. A.²

MD, Ophthalmologist, Microsurgeon ORCID 0009-0003-1852-1592

- 1 Kyrgyz State Medical Institute of Retraining and Advanced Training named after. S. B. Daniyarov, Bishkek, Republic of Kyrgyzstan
- $2-Medical\ center\ "Medcenter\ KG",\ Bishkek,\ Republic\ of\ Kyrgyzstan$

Corresponding Author: Absatarova Nurzida Abdykaymovna, **e-mail:** nurzid82@mail.ru **Funding.** The study had no sponsorship. **Conflict of interest.** None declared.

Abstract

Aim: To analyze the potential impact of orthokeratological lenses when correcting myopia on the anatomical and functional state of the cornea. 160 eyes (80 patients) were examined - 60 eyes (30 patients) with mild myopia, 100

eyes (50 patients) with moderate myopia, average age 12.0 ± 0.38 years. Control group - 40 eyes (20 patients), with emmetropia, average age - 13.0 ± 0.45 years. All patients used reverse geometry orthokeratological lenses "Moonlens" from "Sky Optix" in night mode. **Research methods.** Special research methods were carried out: keratotopography, OCT of the anterior segment of the eye, autorefractometry, ophthalmometry, biometry, skiascopy against the background of cycloplegia, ultrasound of the eye, biomicroscopy, ophthalmoscopy. **Results.** After the use of orthokeratological lenses, flattening of the cornea from the center to the periphery was revealed with the formation of a negative value of the asphericity index "Q" - exactly (-) 0.57 ± 0.054 (p <0.01); an increase in refraction in the middle and peripheral zones of the cornea with an increase in the asymmetry index "I-S" is $3.0\pm0.12D$ (p <0.01). According to the SimK1 and SimK2 meridians, the degree of weakening of refraction in the center of the cornea was revealed (-) $2.32\pm0.19D$ and the degree of enhancement of refraction of the cornea in the middle and peripheral zones - (+) $61\pm0.53D$ and (+) 0.97 0, 11D. **Conclusion.** Thus, the identified changes in the anatomical and functional state of the cornea during the treatment of myopia with orthokeratological lenses in the night mode indicate a transformation of the induced myopic defocus.

Keywords: myopia, cornea, radius of curvature of the cornea, refractive power of the cornea

References

- 1. Mountford J.A., Ruston D., Dave T., Orthokeratology: principies and practice, Edinburgh; New York: Butterworth-Heinemann, 2004.
- 2. Swarbrick H.A. Orthokeratology (corneal refractive therapy): what is it and how does it work. Eye Contact Lens 2004:30(4) 181-185; discussion 205-206, *doi:* 10.1097/01.icl.0000140221.41806.6e
- 3. Tarutta E.P., Verzhanskaya T.Y., Vakhova E.S., et al. Ortokeratologiya: Osnovy podbora OK-linz i vedeniya pacientov v specializirovannyh oftal'mologicheskih klinikah. Metodicheskie posobie. [Orthokeratology: Fundamentals of OC Lens Selection and Patient Management in Specialized Ophthalmological Clinics. Toolkit.] Moscow: Helmholtz National Medical Research Center for Eye Diseases, Moscow State Medical and Dental University, 2016. (In Russ.)
- 4. Lee Y.C. Wang J.H. Chin C.J. Effect of Orthokeratology on Myopia Progression: Twelve-Year Results of a Retrospective Cohost Study. *BMC Ophthalmology* 2017; 17: 243, *doi:* 10.1186/s12886-017-0639-4
- 5. Ren Q., Yang B., Liu P. Orthokeratology in adults and factors affecting success: study design and preliminary results. *Contact Lens Anterior Eye* 2020, 43(6): 595-601, *doi:* 10.1016/j.clae.2020.03.016
- 6. Swarbrick H., Alharb A., Wan E., Lum E., et al. Myopia Control During Orthokeratology Lens Wear in Children Using a Novel Study Design. *Ophthalmology* 2015, 122(3); 620-630, *doi:* 10.1016/j.ophtha.2014.09.028
- 7. Avetisov S.E., Borodina N.V., Kobzova M.V., Musaeva G.M. Sovremennye podhody k ocenke anatomofunkcional'nogo sostoyaniya rogovicy. [Modern approaches to the assessment of the anatomical and functional state of the cornea.] *Vestnik oftal'mologii* [Bulletin of Ophthalmology] 2010; 126(4): 59-63. (In Russ.)
- 8. Tarutta E.P., Verzhanskaya T.Yu. Vozmozhnye mekhanizmy tormozyashchego vliyaniya ortokeratologicheskih linz na progressirovanie miopii. [Possible mechanisms of inhibitory effect of orthokeratological lenses on the progression of myopia.] *Rossijskij oftal'mologicheskij zhurnal [Russian ophthalmological journal]* 2008; 1(2): 26-30. (In Russ.)
- 9. Ezhova E.A., Balalin S.V. Analiz morfometricheskih pokazatelej rogovicy u pacientov s miopiej pri primenenii ortokeratologicheskih linz. [Analysis of morphometric indicators of the cornea in patients with myopia when using orthokeratological lenses.] *Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki [Bulletin of Tambov State University. Series: Natural and technical sciences]* 2016; 21(4): 1535-1540. (In Russ.)
- 10. Avetisov S.E., Shkaeva G.M., Bubnova N.A. Influence of traditional and orthokeratological rigid contact lenses on the anatomical and functional state of the cornea. [Vliyanie tradicionnyh i ortokeratologicheskih zhestkih

kontaktnyh linz na anatomo-funkcional'noe sostoyanie rogovicy.] Vestnik oftal'mologii [Bulletin of Ophthalmology] 2023; 139(1): 7-15, doi: 10.17116/oftalma20231390117 (In Russ.)

- 11. Yeniad B., Yigit B., Issever H., Bilgin L. Effect of Contact Lenses on Corneal Thickness and Corneal Curvature During Usage. Eye Contact Lens 2003; 29(4): 223-229, doi: 10.1097/01icl0000086494.50288.70
- 12. Verzhanskaya T.Y., Tarutta E.., Mamukyan I.V., Toloraya R.R. Vliyanie ortokeratologicheskih kontaktnyh linz na strukturu perednego otrezka glaza. [Effect of orthokeratological contact lenses on the structure of the anterior segment of the eye.] Rossijskij oftal'mologicheskij zhurnal [Russian Ophthalmological Journal] 2009; 2(2): 30-34. (In Russ.)
- 13. Tarutta E.P., Alyaeva O.O., Verzhanskaya T.Yu., Milash S.V. Rezul'taty ocenki obshchego i rogovichnogo astigmatizma raznymi metodami u pacientov s miopiej, pol'zuyushchihsya nochnymi ortokeratologicheskimi linzami. [Results of assessment of total and corneal astigmatism by different methods in patients with myopia using night orthokeratology lenses.] *Vestnik oftal'mologii [Bulletin of Ophthalmology]* 2013; 129(4):59-65. (In Russ.)
- 14. Smith E., Hung L., Hung J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. *Vision Research* 2009; 49(19): 2386-2392, *doi:* 10.1016/j.visres.2009.07.011
- 15. Alyayava O.O. Oftal'moergonomicheskaya ocenka effektivnosti ortokeratologicheskoj korrekcii miopii. Avtoref. disc. na soiskanie uchenoj stepeni k.m.n. [Ophthalmoergonomic evaluation of the effectiveness of orthokeratological correction of myopia. Author's abstract, PhD Thesis.] Moscow, 2014. (In Russ.)
- 16. Matrosova Y.V. Kliniko-funkcional'nye pokazateli pri ortokeratologicheskoj korrekcii miopii. [Clinical and functional indicators in orthokeratological correction of myopia.] *Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki [Bulletin of Tambov State University. Series: Natural and technical sciences]* 2016; 21(4): 1613-1617. (In Russ.)
- 17. Atchison D.A. Li S.-M., Li H., et al. Relative Peripheral Hyperopia Does Not Predict Development and Progression of Myopia in Children. *Invest Ophthalmol Vis Sci* 2015; 56(10): 6162-6170, doi: 10.1167/iovs.15-17200